Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a downward mass flux in the penumbral region of a sunspot

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simple round sunspot near the centre of the solar disk.
Figure 2: Diagram of penumbral structure as inferred from our results.

References

  1. Hale, G. E. Solar vortices. Nature 78, 368–369 (1908).

    Article  Google Scholar 

  2. Hale, G. E. On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315–343 (1908).

    Google Scholar 

  3. Livingston, W. Radial filamentary structure in a sunspot umbra. Nature 350, 45–46 (1901).

    Article  ADS  Google Scholar 

  4. Evershed, J. Radial movement in sun-spots. Mon. Not. R. Astron. Soc. 69, 454–457 (1909).

    Google Scholar 

  5. Thomas, J. H. & Weiss, N. N. in Sunspots: Theory and Observations(eds Thomas, J. H. &Weiss, N. A.) 3–59 (Kluwer, Dordrecht, (1992)).

    Book  Google Scholar 

  6. Ruiz Cobo, B. & del Toro Iniesta, J. C. Inversion of Stokes profiles. Astrophys. J. 398, 375–385 (1992).

    Google Scholar 

  7. 7. Makita, M. & Kawakami, H. Astudy of line asymmetry in unipolar sunspots. Publ. Astron. Soc. Jpn. 38, 257–265 (1986).

    Google Scholar 

  8. Sánchez Almeida, J. & Lites, B. W. Observation and interpretation of the asymmetric Stokes Q, U, and V line profiles in sunspots. Astrophys. J. 398, 359–374 (1992).

    Google Scholar 

  9. Skumanich, A. & Lites, B. W. The polarization properties of model sunspots: the broad-band polarization signature of the Schlüter–Temesvary representation. Astrophys. J. 322, 483–493 (1987).

    Google Scholar 

  10. Landi Degl'Innocenti, E. & Landi Degl'Innocenti, M. Response functions for magnetic lines. Astron. Astrophys. 56, 111–115 (1987).

    Google Scholar 

  11. Ruiz Cobo, B. & del Toro Iniesta, J. C. On the sensitivity of Stokes profiles to physical quantities. Astron. Astrophys. 283, 129–143 (1994).

    Google Scholar 

  12. Elmore, D. F.et al. The Advanced Stokes Polarimeter. A new instrument for solar magnetic field research. Proc. SPIE 1746, 22–33 (1992).

    Google Scholar 

  13. Osherovich, V. A. Anew magneto-hydrostatic theory of sunspots. Solar Phys. 77, 63–68 (1982).

    Google Scholar 

  14. del Toro Iniesta, J. C., Tarbell, T. D. & Ruiz Cobo, B. On the temperature and velocity through the photosphere of a sunspot penumbra. Astrophys. J. 436, 400–410 (1994).

    Google Scholar 

  15. Stanchfield, D. C. H., Thomas, J. H. & Lites, B. W. The vector magnetic field, Evershed flow, and intensity in a sunspot. Astrophys. J. 477, 485–494 (1997).

    Google Scholar 

  16. Maltby, P. in 1st Advances in Solar Physics Euroconf. Advances in the Physics of Sunspots(eds Schmieder, B., Del Toro Iniesta, J. C. &Vázquez, M.) 91–110 (Vol. 118, ASP Conf. Ser., Astron. Soc. Pac., San Francisco, (1997)).

    Google Scholar 

  17. Rimmele, T. R. Evidence for thin elevated Evershed channels. Astron. Astrophys. 298, 260–276 (1995).

    Google Scholar 

  18. Giovanelli, R. & Jones, H. P. Three-dimensional structure of atmospheric magnetic fields. Solar Phys. 79, 267–278 (1982).

    Google Scholar 

  19. Solanki, S. K., Rüedi, I. & Livingston, W. Infrared lines as probes of solar magnetic features. V. The magnetic structure of a simple sunspot and its canopy. Astron. Astyrophys. 263, 339–350 (1992).

    Google Scholar 

  20. Solanki, S. K., Montavon, C. A. P. & Livingston, W. Infrared lines as probes of solar magnetic features. VII. On the nature of the Evershed effect in sunspots. Astron. Astrophys. 283, 221–231 (1994).

    Google Scholar 

  21. Title, A. M.et al. On the magnetic and velocity field geometry of simple sunspots. Astrophys. J. 403, 780–796 (1993).

    Google Scholar 

  22. Wiehr, E. & Degenhardt, D. The Evershed effect in penumbral fine structures. II. Spatial correlation analysis. Astron. Astrophys. 287, 625–632 (1994).

    Google Scholar 

  23. Rimmele, T. R. Sun center observations of the Evershed effect. Astrophys. J. 445, 511–516 (1995).

    Google Scholar 

  24. Thomas, J. H. in Solar Surface Magnetism(eds Rutten, R. J. &Schrijver, C. J.) 219–235 (Kluwer, Dordrecht, (1994)).

    Book  Google Scholar 

  25. Mayer, F. & Schmidt, H. U. Magnetisch ausgerichtete Strömungen zwischen Sonnenflecken. Z. Angew. Math. Mech. 48, 218–221 (1968).

    Google Scholar 

  26. Lites, B. W. Physics of sunspots: dynamics and fine structure. IAU Trans. A(in the press).

  27. Shine, R. A.et al. High-resolution observations of the Evershed effect in sunspots. Astrophys. J. 430, 413–424 (1994).

    Google Scholar 

  28. Thomas, J. H. & Montesinos, B. Asiphon-flow model of the photospheric Evershed flow in a sunspot. Astrophys. J. 407, 398–401 (1993).

    Google Scholar 

  29. Thomas, J. H. in Solar and Astrophysical Magnetohydrodynamic Flows(ed. Tsinganos, K. C.) 39–60 (Kluwer, Dordrecht, (1996)).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Spanish DGES. The NCAR is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaza, C., del Toro Iniesta, J., Cobo, B. et al. Evidence for a downward mass flux in the penumbral region of a sunspot. Nature 389, 47–49 (1997). https://doi.org/10.1038/37933

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37933

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing