Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vanishing atomic migration barrier in SiO2

Abstract

Understanding the high-pressure behaviour of SiO2, a prototypical network-forming material, is important for resolving many problems in the Earth sciences. For pressures of 1–3 GPa (1–3 × 104 atm), it has been shown that increases in pressure result in higher rate constants for atomic transport processes such as diffusion, viscous flow and crystal growth in SiO2 as well as in some silicate melts1,2,3,4,5. Structural transitions and coordination changes observed beyond 10 GPa (59) may also be related to this pressure-induced increase in atomic mobility. There must be limits, however, on the extent to which pressure can enhance mobility, as a migration barrier decreasing linearly with pressure should vanish at a critical pressure, beyond which a sudden change in behaviour should be observed10,11. Here we report measurements of the pressure dependence of the growth rate of quartz from amorphous SiO2 for pressures up to 6 GPa. We observe a sharp peak in growth rate — implying a minimum in viscosity — at 3 GPa, which we interpret as evidence that the critical pressure is being traversed. The corresponding depth below the Earth's surface at which this peak occurs (100 km) suggests that this critical pressure may be related to the ubiquitous cut-off in subduction-related volcanism observed when oceanic plates reach roughly this depth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quartz growth rate at 1,673 K as a function of pressure.
Figure 2: Pressure-induced vanishing of atomic migration barrier owing to ‘free-energy catastrophe’.

Similar content being viewed by others

References

  1. Kushiro, I. in Physics of Magmatic Processes (ed. Hargraves, R. B.) 93–120 (Princeton Univ. Press, Princeton, (1980)).

    Book  Google Scholar 

  2. Fratello, V. J., Hays, J. F. & Turnbull, D. Dependence of growth rate of quartz in fused silica on pressure and impurity content. J. Appl. Phys. 51, 4718–4728 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Shimizu, N. & Kushiro, I. Diffusivity of oxygen in jadeite and diopsite melts at high pressure. Geochim. Cosmochim. Acta 48, 1295–1303 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Goldmsith, J. R. Enhanced Al/Si diffusion in KAlSi3O8 at high pressures: the effect of hydrogen. J. Geol. 96, 109–124 (1988).

    Article  ADS  Google Scholar 

  5. Stebbins, J. F., McMillan, P. F. & Dingwell, D. B. (eds) Structure, Dynamics and Properties of Silicate Melts (Reviews in Mineralogy Vol. 32, (Mineralogical Society of America, Washington, (1995)).

    Book  Google Scholar 

  6. Williams, Q. & Jeanloz, R. P. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science 239, 902–905 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Tsuchida, Y. & Yagi, T. New pressure-induced transformations of silica at room temperature. Nature 347, 267–269 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Meade, C., Hemley, R. J. & Mao, H. K. High pressure X-ray diffraction of SiO2 glass. Phys. Rev. Lett. 69, 1387–1390 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Nygren, E. et al. Pressure dependence of arsenic diffusivity in silicon. Appl. Phys. Lett. 47, 105–107 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Lu, G.-Q., Nygren, E. & Aziz, M. J. Pressure-enhanced crystallization kinetics of amorphous Si and Ge: Implications for point defect mechanisms. J. Appl. Phys. 70, 5323–5345 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Spaepen, F. & Turnbull, D. in Laser Annealing of Semiconductors (eds Poate, J. M. & Mayer, J. W.) 15–42 (Academic, New York, (1982)).

    Book  Google Scholar 

  13. Jackson, K. A., Uhlmann, D. R. & Hunt, J. D. On the nature of crystal growth from the melt. J. Cryst. Growth 1, 1–36 (1967).

    Article  ADS  CAS  Google Scholar 

  14. Walker, D., Carpenter, M. A. & Hitch, C. M. Some simplifications to multi-anvil devices for high pressure experiments. Am. Mineral. 75, 1020–1028 (1990).

    Google Scholar 

  15. Hemley, R. J., Mao, H. K., Bell, P. M. & Mysen, B. O. Raman spectroscopy of SiO2 glass at high pressure. Phys. Rev. Lett. 57, 747–750 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Poe, B. T. et al. Silicon and oxygen self-diffusivities in silicate liquids measured to 15 gigapascals and 2800 Kelvin. Science 276, 1245–1248 (1997).

    Article  CAS  Google Scholar 

  17. Tse, J. S. & Klug, D. D. Mechanical instability of α-quartz: a molecular-dynamics study. Phys. Rev. Lett. 67, 3559–3562 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Meade, C., Reffner, J. A. & Ito, E. Synchrotron infrared absorbance measurements of hydrogen in MgSiO3 perovskite. Science 264, 1558–1560 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Angell, C. A., Cheeseman, P. A. & Tamaddon, S. Pressure enhancement of ion mobilities in liquid silicates from computer simulation studies to 800 kilobars. Science 218, 885–887 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Tsuneyuki, S. & Matsui, Y. Molecular dynamics study of pressure enhancement of ion mobilities in liquid silica. Phys. Rev. Lett. 74, 3197–3200 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Spaepen, F. & Turnbull, D. Kinetics of motion of crystal–melt interfaces. AIP Conf. Proc. 50, 73–83 (1979).

    Article  ADS  CAS  Google Scholar 

  22. Fratello, V. J., Hays, J. F., Spaepen, F. & Turnbull, D. The mechanism of growth of quartz crystals into fused silica. J. Appl. Phys. 51, 6160–6164 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Stolper, E. M. & Ahrens, T. J. On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys. Res. Lett. 14, 1231–1233 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Stebbins, J. F., in Structure, Dynamics and Properties of Silicate Melts (eds Stebbins, J. F., McMillan, P. F. & Dingwell, D. B.) 191–246 (Mineralogical Society of America, Washington, (1995)).

    Book  Google Scholar 

  25. Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957).

    Article  ADS  CAS  Google Scholar 

  26. Laidler, K. J. Chemical Kinetics (Harper & Row, New York, (1987)).

    Google Scholar 

  27. Gill, J. Orogenic Andesites and Plate Tectonics (Springer, Berlin, (1981)).

    Book  Google Scholar 

  28. Agee, C. B., Li, J., Shannon, M. C. & Circone, S. Pressure–temperature phase diagram for the Allende meteorite. J. Geophys. Res. 100, 17725–17740 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Harvard MRSEC. We thank R. P. Jeanloz for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Aziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, M., Circone, S. & Agee, C. Vanishing atomic migration barrier in SiO2. Nature 390, 596–599 (1997). https://doi.org/10.1038/37581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37581

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing