Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Properties of synaptic transmission at single hippocampal synaptic boutons

Abstract

SYNAPTIC transmission between individual presynaptic terminals and postsynaptic dendrites is a fundamental element of communication among central nervous system neurons. Yet little is known about evoked neurotransmission at the level of single presynaptic boutons1–5. Here we describe key functional characteristics of individual presynaptic boutons of hippocampal neurons in culture. Excitatory postsynaptic currents (e.p.s.cs) were evoked by localized application of elevated K+ /Ca2+ solution to single functional boutons, visually identified by staining with the vital dye FM1-43 (refs 6, 7). Frequent repetitive stimulation produced a decline in the incidence of e.p.s.cs as the pool of releasable vesicles was exhausted; typically, recovery proceeded with a time constant of about 40 s (23 °C), and involved a vesicular pool capable of generating about 90 e.p.s.cs without recycling. At individual synapses, synaptic currents were broadly distributed in amplitude1, but this distribution was remarkably similar at multiple synapses on a given postsynaptic neuron. The average size of synaptic currents and of responses to focal glutamate application varied fourfold across different cells, decreasing markedly with increasingly dense synaptic innervation. This raises the possibility of a very effective mechanism for coordinating synaptic strength at multiple sites throughout the dendritic tree.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bekkers, J. M., Richerson, G. B. & Stevens, C. V. Proc. natn. Acad. Sci. U.S.A. 87, 5359–5362 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Lavidis, N. A. & Bennett, M. R. J. Physiol., Lond. 454, 9–26 (1992).

    Article  CAS  Google Scholar 

  3. Lisman, J. E. & Harris, K. M. Trends Neurosci. 16, 141–147 (1993).

    Article  CAS  Google Scholar 

  4. Edwards, F. Nature 350, 271–272 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Raastad, M., Storm, J. F. & Andersen, P. Eur. J. Neurosci. 4, 113–117 (1992).

    Article  Google Scholar 

  6. Betz, W. J., Mao, F. & Bewick, G. S. J. Neurosci. 12, 363–375 (1992).

    Article  CAS  Google Scholar 

  7. Ryan, T. A. Neuron 11, 713–724 (1993).

    Article  CAS  Google Scholar 

  8. Malgaroli, A. & Tsien, R. W. Nature 357, 134–139 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Jones, K. A. & Baughman, R. Neuron 7, 593–603 (1991).

    Article  CAS  Google Scholar 

  10. Betz, W. J. & Bewick, G. S. J. Physiol., Lond. 460, 287–309 (1993).

    Article  CAS  Google Scholar 

  11. Katz, B. & Miledi, R. J. Physiol., Lond. 189, 535–544 (1967).

    Article  CAS  Google Scholar 

  12. Dodge, F. A. Jr & Rahamimoff, R. J. Physiol., Lond. 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  13. Wu, L. G. & Saggau, P. Neuron 12, 1139–1148 (1994).

    Article  CAS  Google Scholar 

  14. Jonas, P., Major, G. & Sakmann, B. J. Physiol., Lond. 472, 615–663 (1993).

    Article  CAS  Google Scholar 

  15. Silver, R. A., Traynelis, S. F. & Cull-Candy, S. G. Nature 355, 163–166 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Stevens, C. F. & Tsujimoto, T. Proc. natn. Acad. Sci. U.S.A. 92, 846–849 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Horrigan, F. T. & Bookman, R. J. Neuron 13, 1119–1129 (1994).

    Article  CAS  Google Scholar 

  18. Tong, G. & Jahr, C. E. Neuron 12, 51–59 (1994).

    Article  CAS  Google Scholar 

  19. Stevens, C. F. Cell 72 (suppl.), 55–63 (1993).

    Article  Google Scholar 

  20. Edwards, F. A., Konnerth, A. & Sakmann, B. J. Physiol., Lond. 430, 213–249 (1990).

    Article  CAS  Google Scholar 

  21. Larkman, A., Stratford, K. & Jack, J. Nature 350, 344–347 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Liao, D., Jones, A. & Malinow, R. Neuron 9, 1089–1097 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Tsien, R. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995). https://doi.org/10.1038/375404a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375404a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing