Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses

Abstract

Rigorous investigation of synaptic transmission requires analysis of unitary synaptic events by simultaneous recording from presynaptic terminals and postsynaptic target neurons. However, this has been achieved at only a limited number of model synapses, including the squid giant synapse and the mammalian calyx of Held. Cortical presynaptic terminals have been largely inaccessible to direct presynaptic recording, due to their small size. Here, we describe a protocol for improved subcellular patch-clamp recording in rat and mouse brain slices, with the synapse in a largely intact environment. Slice preparation takes ~2 h, recording ~3 h and post hoc morphological analysis 2 d. Single presynaptic hippocampal mossy fiber terminals are stimulated minimally invasively in the bouton-attached configuration, in which the cytoplasmic content remains unperturbed, or in the whole-bouton configuration, in which the cytoplasmic composition can be precisely controlled. Paired pre–postsynaptic recordings can be integrated with biocytin labeling and morphological analysis, allowing correlative investigation of synapse structure and function. Paired recordings can be obtained from mossy fiber terminals in slices from both rats and mice, implying applicability to genetically modified synapses. Paired recordings can also be performed together with axon tract stimulation or optogenetic activation, allowing comparison of unitary and compound synaptic events in the same target cell. Finally, paired recordings can be combined with spontaneous event analysis, permitting collection of miniature events generated at a single identified synapse. In conclusion, the subcellular patch-clamp techniques detailed here should facilitate analysis of biophysics, plasticity and circuit function of cortical synapses in the mammalian central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup for MFB–CA3 pyramidal neuron paired recordings.
Fig. 2: Videomicroscopy-guided targeting of pre- and postsynaptic structures for MFB–CA3 pyramidal neuron paired recordings.
Fig. 3: MFB–CA3 pyramidal neuron paired recordings combined with post hoc morphological analysis.
Fig. 4: MFB–CA3 pyramidal neuron paired recordings in mice and rats.
Fig. 5: MFB–CA3 pyramidal neuron paired recordings combined with mossy fiber tract stimulation.
Fig. 6: MFB–CA3 pyramidal neuron paired recordings combined with optogenetic stimulation in Prox1-Cre mice.
Fig. 7: Miniature EPSCs evoked by depolarization of a single identified presynaptic terminal.

Similar content being viewed by others

Data availability

Original data are available in ref. 16 (https://doi.org/10.1016/j.neuron.2020.05.013). Further original data are stored in the scientific repository of the Institute of Science and Technology Austria and will be provided by the corresponding author upon reasonable request.

Code availability

Analysis software is available via GitHub (Stimfit version 0.15.8; https://github.com/neurodroid/stimfit). Further code for analysis of miniature EPSCs can be provided by the corresponding author upon reasonable request.

References

  1. Adler, E. M., Augustine, G. J., Duffy, S. N. & Charlton, M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Llinás, R. R. The Squid Giant Synapse: A Model for Chemical Transmission (Oxford University Press, 1999).

  3. Forsythe, I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. 479, 381–387 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  4. von Gersdorff, H. & Borst, J. G. G. Short-term plasticity at the calyx of Held. Nat. Rev. Neurosci. 3, 53–64 (2002).

    Article  Google Scholar 

  5. Neher, E. Some subtle lessons from the calyx of Held synapse. Biophys. J. 112, 215–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borst, J. G. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Vyleta, N. P. & Jonas, P. Loose coupling between Ca2+ channels and release sensors at a plastic hippocampal synapse. Science 343, 665–670 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Lindau, M. & Neher, E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Arch. 411, 137–146 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. von Gersdorff, H. & Mathews, G. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739 (1994).

    Article  Google Scholar 

  10. Hallermann, S., Pawlu, C., Jonas, P. & Heckmann, M. A large pool of releasable vesicles in a cortical glutamatergic synapse. Proc. Natl. Acad. Sci. USA 100, 8975–8980 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Delvendahl, I., Vyleta, N. P., von Gersdorff, H. & Hallermann, S. Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90, 492–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Espinoza, C., Guzman, S. J., Zhang, X. & Jonas, P. Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nat. Commun. 9, 4605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Akaike, N., et al. Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampal neuron. Neurosci. Res. 42, 187–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Vyleta, N. P., Borges-Merjane, C. & Jonas, P. Plasticity-dependent, full detonation at hippocampal mossy fiber-CA3 pyramidal neuron synapses. eLife 5, e17977 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vandael, D., Borges-Merjane, C., Zhang, X. & Jonas, P. Short-term plasticity at hippocampal mossy fiber synapses is induced by natural activity patterns and associated with vesicle pool engram formation. Neuron 107, 509–521.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chicurel, M. E. & Harris, K. M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Rollenhagen, A. et al. Structural determinants of transmission at large hippocampal mossy fiber synapses. J. Neurosci. 27, 10434–10444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borges-Merjane, C., Kim, O. & Jonas, P. Functional electron microscopy, ‘flash and freeze,’ of identified cortical synapses in acute brain slices. Neuron 105, 992–1006 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rancz, E. A. et al. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ritzau-Jost, A. et al. Ultrafast action potentials mediate kilohertz signaling at a central synapse. Neuron 84, 152–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Vivekananda, U. et al. Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization. Proc. Natl. Acad. Sci. USA 114, 2395–2400 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Kawaguchi, S. Y. & Sakaba, T. Fast Ca2+ buffer-dependent reliable but plastic transmission at small CNS synapses revealed by direct bouton recording. Cell Rep. 21, 3338–3345 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Ritzau-Jost, A. et al. Large, stable spikes exhibit differential broadening in excitatory and inhibitory neocortical boutons. Cell Rep. 34, 108612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Geiger, J. R. P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Bischofberger, J., et al. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Perkins, K. L. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J. Neurosci. Methods 154, 1–18 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alcami, P., Franconville, R., Llano, I. & Marty, A. Measuring the firing rate of high-resistance neurons with cell-attached recording. J. Neurosci. 32, 3118–3130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45, 405–417 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Dodt, H. U. & Zieglgänsberger, W. Infrared videomicroscopy: a new look at neuronal structure and function. Trends Neurosci. 17, 453–458 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. 472, 615–663 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lawrence, J. J., Grinspan, Z. M. & McBain, C. J. Quantal transmission at mossy fibre targets in the CA3 region of the rat hippocampus. J. Physiol. 554, 175–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kamiya, H., Shinozaki, H. & Yamamoto, C. Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J. Physiol. 493, 447–455 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weisskopf, M. G. & Nicoll, R. A. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature 376, 256–259 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Ben-Simon, Y. et al. A combined optogenetic-knockdown strategy reveals a major role of tomosyn in mossy fiber synaptic plasticity. Cell Rep. 12, 396–404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mori, M., Abegg, M. H., Gähwiler, B. H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Bischofberger, J., Geiger, J. R. P. & Jonas, P. Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J. Neurosci. 22, 10593–10602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Martinello, K., et al. The subthreshold-active Kv7 current regulates neurotransmission by limiting spike-induced Ca2+ influx in hippocampal mossy fiber synaptic terminals. Commun. Biol. 2, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alle, H. & Geiger, J. R. P. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Szabadics, J. & Soltesz, I. Functional specificity of mossy fiber innervation of GABAergic cells in the hippocampus. J. Neurosci. 29, 4239–4251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amaral, D. G. & Dent, J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).

    Article  CAS  PubMed  Google Scholar 

  43. Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geiger, J. R. P. et al. Patch-clamp recording in brain slices with improved slicer technology. Pflügers Arch. 443, 491–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch. 414, 600–612 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Guzman, S. J., Schlögl, A. & Schmidt-Hieber, C. Stimfit: quantifying electrophysiological data with Python. Front. Neuroinform. 8, 16 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Williams, S. R. & Mitchell, S. J. Direct measurement of somatic voltage clamp errors in central neurons. Nat. Neurosci. 11, 790–798 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. del Castillo, J. & Katz, B. Changes in end-plate activity produced by presynaptic polarization. J. Physiol. 124, 586–604 (1954).

    Article  PubMed Central  Google Scholar 

  49. Li, L., Bischofberger, J. & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci. 27, 13420–13429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pernía-Andrade, A. J. et al. A deconvolution-based method with high sensitivity and temporal resolution for detection of spontaneous synaptic currents in vitro and in vivo. Biophys. J. 103, 1429–1439 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X., Schlögl, A., Vandael, D. & Jonas, P. MOD: a novel machine-learning optimal-filtering method for accurate and efficient detection of subthreshold synaptic events in vivo. J. Neurosci. Methods https://doi.org/10.1016/j.jneumeth.2021.109125 (2021).

  52. Miyano, R., Miki, T. & Sakaba, T. Ca-dependence of synaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal. J. Physiol. 597, 4373–4386 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Bollmann, J. H., Sakmann, B. & Borst, J. G. G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Midorikawa, M. & Sakaba, T. Kinetics of releasable synaptic vesicles and their plastic changes at hippocampal mossy fiber synapses. Neuron 96, 1033–1040 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Henze, D. A., McMahon, D. B., Harris, K. M. & Barrionuevo, G. Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J. Neurophysiol. 87, 15–29 (2002).

    Article  PubMed  Google Scholar 

  57. Salin, P. A., Scanziani, M., Malenka, R. C. & Nicoll, R. A. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 13304–13309 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Jackman, S. L., Turecek, J., Belinsky, J. E. & Regehr, W. G. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529, 88–91 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Griffith, W. H. Voltage-clamp analysis of posttetanic potentiation of the mossy fiber to CA3 synapse in hippocampus. J. Neurophysiol. 63, 491–501 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Toth, K., Suares, G., Lawrence, J. J., Philips-Tansey, E. & McBain, C. J. Differential mechanisms of transmission at three types of mossy fiber synapse. J. Neurosci. 20, 8279–8289 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 692692 to P.J.) and the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award to P.J., V 739-B27 to C.B.M.). We are grateful to F. Marr and C. Altmutter for excellent technical assistance and cell reconstruction, E. Kralli-Beller for manuscript editing, and the Scientific Service Units of IST Austria, especially T. Asenov and Miba machine shop, for maximally efficient support.

Author information

Authors and Affiliations

Authors

Contributions

D.V. and Y.O. performed the experiments and analyzed the data. P.J. and D.V. conceived the protocol and wrote the text. All authors analyzed data and jointly revised the protocol.

Corresponding author

Correspondence to Peter Jonas.

Ethics declarations

Competing interests

The authors declare that they have the following competing financial interests: industrial collaboration with Leica Microsystems.

Additional information

Peer review information Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Vandael, D. et al. Neuron 107, 509–521.e7 (2020): https://doi.org/10.1016/j.neuron.2020.05.013

Supplementary information

Reporting Summary

Supplementary Video 1

MFB–CA3 pyramidal neuron paired recording under experimental conditions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandael, D., Okamoto, Y., Borges-Merjane, C. et al. Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses. Nat Protoc 16, 2947–2967 (2021). https://doi.org/10.1038/s41596-021-00526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00526-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing