Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hybrid speciation accompanied by genomic reorganization in wild sunflowers

Abstract

THE origin of a new diploid species via hybridization is theoretically difficult because it requires the development of reproductive isolation in sympatry. In the absence of isolation, the hybrid genotype will be overcome by gene flow with its parents. According to genetic models1-3, reproductive isolation can be facilitated by rapid karyotypic evolution in the recombinant hybrid. Here we use comparative linkage mapping4-5 to demonstrate extensive genomic reorganization in the hybrid species Helianthm anomalus, relative to its parents H. annuus and H. petiolaris. The unprecedented detail provided by the linkage maps indicates that rapid karyotypic evolution in H. anomalus results from the merger of pre-existing structural differences between the parents, as well as chromosomal rearrangements apparently induced by recombination. Moreover, determination of the parental origin of mapped loci in H. anomalus suggests that parental genomic structure has influenced hybrid genomic composition by protecting several large linkage blocks from recombination during speciation. These mapping data, when combined with previous meiotic analyses6 and evidence of semisterility between the hybrid and its parents6,7, satisfy genetic models for speciation through hybrid recombination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Stebbins, G. L. Cytologia (Suppl. Vol.). 336–340 (1957).

    Google Scholar 

  2. 2

    Grant, V. Cold Spring Harb. Symp. quant. Biol. 23, 337–363 (1958).

    CAS  Article  Google Scholar 

  3. 3

    Templeton, A. R. A. Rev. Ecol. Syst. 12, 23–48 (1981).

    Article  Google Scholar 

  4. 4

    Bonierbale, M. W., Plaisted, R. L. & Tanksley, S. D. Genetics 120, 1095–1103 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Tanksley, S. D., Bernatsky, R., Lapitan, N. L. & Prince, J. P. Proc. natn. Acad. Sci., U.S.A. 85, 6419–6423 (1988).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Chandler, J. M., Jan, C. & Beard, B. H. Syst. Bot. 11, 353–371 (1986).

    Article  Google Scholar 

  7. 7

    Heiser, C. B. Rhodora 60, 271–283 (1958).

    Google Scholar 

  8. 8

    Heiser, C. B., Smith, D. M., Clevenger, S. & Martin, W. C. Mem. Torrey bot. Club 22, 1–218 (1969).

    Google Scholar 

  9. 9

    Rieseberg, L. H., Beckstrom, S., Liston, A. & Arias, D. Syst. Bot. 16, 50–76 (1991).

    Article  Google Scholar 

  10. 10

    Rieseberg, L. H. Am. J. Bot. 78, 1218–1237 (1991).

    Article  Google Scholar 

  11. 11

    Heiser, C. B. Evolution 1, 249–262 (1947).

    Article  Google Scholar 

  12. 12

    Nabhan, G. P. & Reichhardt, K. L. SW. Nat. 28, 231–235 (1983).

    Article  Google Scholar 

  13. 13

    Crawford, D. J. Plant Molecular Systematics (Wiley, New York, 1990).

    Google Scholar 

  14. 14

    Williams, J. K. G., Kubelic, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. Nucleic Acids Res. 18, 6531–6535 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Rieseberg, L. H., Choi, H. C., Chan, R. & Spore, C. Heredity 70, 285–293 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Lander, E. S. et al. Genomics 1, 174–181 (1987).

    CAS  Article  Google Scholar 

  17. 17

    Holm, D. G., Fitz-Earle, M. & Sharp, C. B. Theor. appl. Genet. 57, 247–256 (1980).

    CAS  Article  Google Scholar 

  18. 18

    Coyne, J. A. Evolution 28, 505–506 (1974).

    PubMed  Google Scholar 

  19. 19

    Rieseberg, L. H., Carter, R. & Zona, S. Evolution 44, 1498–1511 (1990).

    CAS  Article  Google Scholar 

  20. 20

    Goodfellow, P. N. Curr. Biol. 3, 149–151 (1993).

    CAS  Article  Google Scholar 

  21. 21

    Fritsch, P. & Rieseberg, L. H. Nature 359, 633–636 (1992).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rieseberg, L., Van Fossen, C. & Desrochers, A. Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375, 313–316 (1995). https://doi.org/10.1038/375313a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing