Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolution beyond the 'information limit' in transmission electron microscopy

Abstract

THE conventional resolution of transmission electron microscopes is orders of magnitude larger than the wavelength of the electrons used. Aberrations of the objective lens corrupt spatial information on length scales below a limit known as the point resolution. Methods to correct for lens aberrations1–5 require knowledge of the phase of the waves which make up the image (this constitutes the 'phase problem'). Beyond the point resolution, information can still be transferred by the microscope, but partial coherence of the scattered beams imposes an ultimate limit (the 'information limit9) on the resolution of the transferred image information. Here we show that this limit can be overcome to obtain images of still higher resolution with a scanning transmission electron microscope. Our approach involves collecting coherent microdiffraction patterns as a function of probe position, enabling us to extract the phase differences of all neighbouring pairs of diffracted beams. Using this approach for a microscope with a conventional point resolution of 0.42 nm and a conventional information limit of 0.33 nm, we are able to form an aberration-free image that resolves an atomic spacing of 0.136 nm.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Gabor, D. Nature 161, 777–778 (1948).

    Article  ADS  CAS  Google Scholar 

  2. Gabor, D. Proc. R. Soc. A197, 454–487 (1949).

    ADS  Google Scholar 

  3. Lichte, H. Adv. opt. Electron Microsc. 12, 25–91 (1991).

    Article  Google Scholar 

  4. Orchowski, A., Rau, W. D. & Lichte, H. Phys. Rev. Lett. 74, 399–401 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Van Dyck, D., Op de Beeck, M. & Coene, W. Optik 93, 103–107 (1993).

    Google Scholar 

  6. Spenoe, J. C. H. Experimental High-Resolution Electron Microscopy (Oxford Univ. Press, New York, 1988).

    Google Scholar 

  7. Hoppe, W. Acta crystallogr. A25, 495–501 (1969).

    Article  Google Scholar 

  8. Hoppe, W. & Strube, G. Acta crystallogr. A25, 502–507 (1969).

    Article  Google Scholar 

  9. Hoppe, W. Acta. crystallogr. A25, 508–514 (1969).

    Article  Google Scholar 

  10. Hegerl, R. & Hoppe, W. Ber. Bunsenges. phys. Chem. 74, 1148–1154 (1979).

    Article  Google Scholar 

  11. Konnert, J., D'Antonio, P., Cowley, J. M., Higgs, A. & Ou, H. J. Ultramicroscopy 30, 371–384 (1989).

    Article  CAS  Google Scholar 

  12. Izui, K., Furuno, S. & Otsu, H. J. Electron Microsc. 26, 129–132 (1977).

    Google Scholar 

  13. Izui, K., Furuno, S., Nishida, T., Otsu, H. & Kuwabara, S. J. Electron Microsc. 27, 171–179 (1978).

    Google Scholar 

  14. Glaisher, R. W., Spargo, A. E. C. & Smith, D. J. Ultramicroscopy 27, 19–34 (1989).

    Article  CAS  Google Scholar 

  15. Glaisher, R. W., Spargo, A. E. C. & Smith, D. J. Ultramicroscopy 27, 35–52 (1989).

    Article  CAS  Google Scholar 

  16. Spence, J. C. H. & Cowley, J. M. Optik 50, 129–142 (1978).

    CAS  Google Scholar 

  17. Nathan, R. in Digital Processing of Biomedical Images (eds Preston, K. & Onoe, M.) 75–88 (Plenum, New York, 1976).

    Book  Google Scholar 

  18. Spence, J. C. H. Optik 49, 117–120 (1977).

    Google Scholar 

  19. Spence, J. C. H. Scann. Electron Microsc. 1, 61–68 (1978).

    Google Scholar 

  20. McCallum, B. C. & Rodenburg, J. M. Ultramicroscopy 52, 85–99 (1993).

    Article  Google Scholar 

  21. Rodenburg, J. M. & Bates, R. H. T. Phil. Trans. R. Soc. A339, 521–553 (1992).

    ADS  Google Scholar 

  22. McCallum, B. C. & Rodenburg, J. M. Ultramicroscopy 45, 371–380 (1992).

    Article  Google Scholar 

  23. Rodenburg, J. M., McCallum, B. C. & Nellist, P. D. Ultramicroscopy 48, 303–314 (1993).

    Article  Google Scholar 

  24. McCallum, B. C. & Rodenburg, J. M. J. opt. Soc. Am A10, 231–239 (1993).

    Article  ADS  Google Scholar 

  25. Cowley, J. M. Appl. Phys. Lett. 15, 58–59 (1969).

    Article  ADS  Google Scholar 

  26. Cowley, J. M. Ultramicroscopy 2, 3–16 (1976).

    Article  CAS  Google Scholar 

  27. Dowell, W. C. T. & Goodman, P. Phil. Mag. 28, 471–473 (1973).

    Article  ADS  Google Scholar 

  28. Vine, W. J., Vincent, R., Spellward, P. & Steeds, J. W. Ultramicroscopy 41, 423–428 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nellist, P., McCallum, B. & Rodenburg, J. Resolution beyond the 'information limit' in transmission electron microscopy. Nature 374, 630–632 (1995). https://doi.org/10.1038/374630a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374630a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing