Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fatigue-free ferroelectric capacitors with platinum electrodes


A SIGNIFICANT fraction of the computer memory industry is at present involved in the manufacture of non-volatile memory devices1—that is, devices which retain information when power is interrupted. For such applications (and also for volatile memories), the use of capacitors constructed from ferroelectric thin films has stimulated much interest1. In such structures, information is stored in the polarization state of the ferroelectric material itself, which should in principle lead to lower power requirements, faster access time and potentially lower cost1. But the use of ferroelectrics is not without problems; the memories constructed to date have generally suffered from poor retention of stored information and degradation of performance ('fatigue') with use1–3. Here we describe the preparation and characterization of thin-film capacitors using ferroelectric materials from a large family of layered perovskite oxides, exemplified by SrBi2Ta2O9, SrBi2NbTaO9 and SrBi4Ta4O15. The structural flexibility of these materials allows their properties to be tailored so that many of the problems associated with previous ferroelectric memories are avoided. In particular, our capacitors do not show significant fatigue after 1012 switching cycles, and they exhibit good retention characteristics and low leakage currents even with films less than 100 nm thick.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Bondurant, D. W. & Gnadinger, F. P. IEEE Spectrum 26, 30–34 (1989).

    Article  Google Scholar 

  2. Arlt, G. & Pertsev, N. A. J. appl. Phys. 70, 2283–2289 (1991).

    ADS  Article  Google Scholar 

  3. Artlt, G. & Robels, U. Integ. Ferroelect. 3, 247–254 (1993).

    Google Scholar 

  4. Plessner, K. W. Proc. phys. Soc. B69, 1261–1269 (1956).

    ADS  Article  Google Scholar 

  5. Scott, J. F. & Araujo, C. A. Science 246, 1400–1405 (1989).

    ADS  CAS  Article  Google Scholar 

  6. Duiker, H. M. et al. J. appl. Phys. 68, 5783–5789 (1990).

    ADS  CAS  Article  Google Scholar 

  7. Postnikov, V. S., Pavlov, V. S., Gridnev, S. A. & Turkov, S. K. Sov. Phys. Solid St. 10, 1267–1270 (1968).

    Google Scholar 

  8. Kudzin, A. Yu., Panchenko, T. V. & Yudin, S. P. Sov. Phys. Solid St. 16, 1589–1591 (1975).

    Google Scholar 

  9. Stewart, W. C. & Cosentino, L. S. Ferroelectrics 1, 149–153 (1970).

    CAS  Article  Google Scholar 

  10. Lohkamper, R., Neumann, H. & Arlt, G. J. appl. Phys. 68, 4220–4227 (1990).

    ADS  Article  Google Scholar 

  11. Dakin, T. W. & Berg, D. Progress in Dielectrics Vol. 4 (eds Birks, J. B. & Hart, J.) 165–180 (Academic, New York, 1962).

    Google Scholar 

  12. Robblee, L. S. & Cogan, S. F. in Encyclopedia of Materials Science and Engineering Suppl. Vol. 1 (ed. Cahn, R. W.) 276–281 (Pergamon, Oxford, 1988).

    Google Scholar 

  13. Robblee, L. S. US Patent Nos 4677989 & 4717581 (1987).

  14. Takasu, M. Integ. Ferroelect. (in the press).

  15. Kwok, C. K., Vijay, D. P., Desu, S. B., Parikh, N. R. & Hill, E. A. Integ. Ferroelect. 3, 121–128 (1993).

    CAS  Article  Google Scholar 

  16. Krusin-Elbaum, L. & Wittmer, M. J. electrochem. Soc. 135, 2610–2618 (1988).

    CAS  Article  Google Scholar 

  17. Hren, P. D. et al. Integ. Ferroelect. 2, 311–326 (1992).

    CAS  Article  Google Scholar 

  18. Kwok, C. K., Vijay, D. P., Desu, S. B., Parikh, N. R. & Hill, E. A. Integ. Ferroelect. 3, 121–130 (1993).

    CAS  Article  Google Scholar 

  19. Fazan, P. C. Integ. Ferroelect. 4, 247–256 (1994).

    CAS  Article  Google Scholar 

  20. Kinney, W. Integ. Ferroelect. 4, 131–144 (1994).

    Article  Google Scholar 

  21. Smolenskii, G. A. & Agronovskaya, A. I. Fiz. Tverd. Tela 1, 169–172, 442–145, 990–994 (1959); Sov. Phys. Solid St. 1, 149–152 (1959).

    CAS  Google Scholar 

  22. Smolenskii, G. A. & Agronovskaya, A. I. Fiz. Tverd. Tela 1, 442–445 (1959); Sov. Phys. Solid St. 1, 400–403 (1959).

    Google Scholar 

  23. Smolenskii, G. A. & Agronovskaya, A. I. Fiz. Tverd. Tela 1, 990–994 (1959); Sov. Phys. Solid St. 1, 907–911 (1959).

    CAS  Google Scholar 

  24. Mihara, T. Nikkei Electron. 581, 94–97 (1993).

    Google Scholar 

  25. Sumi, T. et al. in Int. Solid St. Circuits Conf. (ISSC94) (IEEE, New York, in the press).

  26. Van Buskirk, P. C., Roeder, J., Bilodeau, S., Pombrik, S. & Beratan, H. Integ. Ferroelect. 6, 141–153 (1995).

    Article  Google Scholar 

  27. Smyth, D. in Proc. NATO Conf. Science and Technology of Thin Films (eds Auciello, O. & Waser, R.) (Kluwer Academic, Dordrecht, in the press).

  28. Abt, N. E., Misic, P., Zehngut, D. & Regan, E. Integ. Ferroelect. 4, 349–355 (1994).

    Article  Google Scholar 

  29. Abt, N. E., Moazzami, R. & Nissan-Cohen, Y. Integ. Ferroelect. 2, 121–131 (1992).

    CAS  Article  Google Scholar 

  30. Bernacki, S. et al. Integ. Ferroelect. 3, 1–16 (1993).

    Article  Google Scholar 

  31. Toledano, J.-C., Schneck, J. & Pierre, L. in Incommensurate Modulations in Bismuth-Based High-Tc Superconductors 335–345 (ed. Toledano, J.-C.) (NATO ASI Ser. B229, Plenum, New York, 1990).

    Google Scholar 

  32. Le Page, Y., McKinnon, W. R., Tarascon, J. M. & Barboux, P. Phys. Rev. B40, 6810–6816 (1989).

    ADS  CAS  Article  Google Scholar 

  33. Anderson, J. S. & Hutchinson, J. L. Commun. Phys. 10, 443–467 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Araujo, CP., Cuchiaro, J., McMillan, L. et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing