Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures


DEFORESTATION and logging transform more forest in eastern and southern Amazonia than in any other region of the world1–3. This forest alteration affects regional hydrology4–11 and the global carbon cycle12–14, but current analyses of these effects neglect an important deep-soil link between the water and carbon cycles. Using rainfall data, satellite imagery and field studies, we estimate here that half of the closed forests of Brazilian Amazonia depend on deep root systems to maintain green canopies during the dry season. Evergreen forests in northeastern Pará state maintain evapotranspiration during five-month dry periods by absorbing water from the soil to depths of more than 8m. In contrast, although the degraded pastures of this region also contain deep-rooted woody plants, most pasture plants substantially reduce their leaf canopy in response to seasonal drought, thus reducing dry-season evapotranspiration and increasing potential subsurface runoff relative to the forests they replace. Deep roots that extract water also provide carbon to the soil. The forest soil below 1 m depth contains more carbon than does above-ground biomass, and as much as 15% of this deep-soil carbon turns over on annual or decadal timescales. Thus, forest alteration that affects depth distributions of carbon inputs from roots may also affect net carbon storage in the soil.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    FAO Forestry Pap. 112 (FAO, Rome, 1993).

  2. 2

    Fearnside, P. M. Ambio 22, 537–545 (1993).

    Google Scholar 

  3. 3

    Skole, D. & Tucker, C. Science 260, 1905–1910 (1993).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Chahine, M. T. Nature 359, 373–380 (1992).

    ADS  Article  Google Scholar 

  5. 5

    Dickinson, R. E. & Henderson-Sellers, A. Q. Jl R. met. Soc. 114, 439–462 (1988).

    ADS  Article  Google Scholar 

  6. 6

    Victoria, R. L., Martinelli, L. A., Mortatti, J. & Richey, J. Ambio 20, 384–387 (1991).

    Google Scholar 

  7. 7

    Shuttleworth, W. J. et al. J. Hydrol. 129, 71–85 (1991).

    ADS  Article  Google Scholar 

  8. 8

    Nobre, C., Sellers, P. & Shukla, J. J. Clim. 4, 957–988 (1991).

    ADS  Article  Google Scholar 

  9. 9

    Shukla, J., Nobre, C. A. & Sellers, P. Science 247, 1322–1325 (1990).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Lean, J. & Warrilow, D. A. Nature 342, 411–413 (1989).

    ADS  Article  Google Scholar 

  11. 11

    Salati, E., Dall'Olio, A., Gat, J. & Natsui, E. Wat. Resour. Res. 15, 1250–1258 (1979).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Houghton, J. T., Jenkins, G. J. & Elphraums, J. J. (eds) Climate Change. The IPCC Scientific Assessment (Cambridge Univ. Press, New York, 1990).

  13. 13

    Houghton, J. T., Callander, B. A. & Varney, S. K. (eds) The Supplementary Report to the IPCC Scientific Assessment (Cambridge Univ. Press, New York, 1992).

  14. 14

    Houghton, R. A. Clim. Change 19, 99–118 (1991).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Uhl, C., Buschbacher, R. & Serrão, E. A. S. J. Ecol. 76, 663–681 (1988).

    Article  Google Scholar 

  16. 16

    Nepstad, D. C., Uhl, C. & Serrão, E. A. S. Ambio 20, 248–255 (1991).

    Google Scholar 

  17. 17

    Mattos, M. M. & Uhl, C. Wld Dev. 22, 145–158 (1994).

    Google Scholar 

  18. 18

    Richter, D. D. & Babbar, L. I. Adv. Ecol. Res. 21, 315–389 (1991).

    Article  Google Scholar 

  19. 19

    Nepstad, D. C. thesis, Yale Univ. (1989).

  20. 20

    Potter, C. S. et al. Globl Biogeochem. Cycles 74, 811–841 (1993).

    ADS  Article  Google Scholar 

  21. 21

    Sombroek, W., Nachtergaele, F. O. & Hebel, A. Ambio 22, 417–426 (1993).

    Google Scholar 

  22. 22

    Trumbore, S. E. Globl Biogeochem. Cycles 7, 275–290 (1993).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Veldkamp, E. Soil Sci. Soc. Am. J. 58, 175–180 (1994).

    ADS  Article  Google Scholar 

  24. 24

    Lugo, A. E. & Brown, S. Pl. Soil 149, 27–41 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Detwiler, R. P. Biogeochemistry 2, 67–93 (1986).

    CAS  Article  Google Scholar 

  26. 26

    Fisher, M. J. et al. Nature 371, 236–238 (1994).

    ADS  Article  Google Scholar 

  27. 27

    Poels, R. I. H. Soils, Water and Nutrients in a Forest Ecosystem in Surinam (Agric. Univ., Waageningen, The Netherlands, 1987).

    Google Scholar 

  28. 28

    Global Vegetation Index User's Guide (ed. Kidwell, K. B.) (NOAA, Washington DC, 1990).

  29. 29

    Stone, T. A., Schlesinger, P., Houghton, R. A. & Woodwell, G. M. Photogram. Eng. and Rem. Sens. 60, 541–551 (1994).

    Google Scholar 

  30. 30

    Uhl, C., Kauffman, J. B. & Silva, E. D. Ciência Hoje 65, 25–32 (1990).

    Google Scholar 

  31. 31

    Topp, G. C., Davis, J. L. & Annan, A. P. Wat. Resour. Res. 16, 574–582 (1980).

    ADS  Article  Google Scholar 

  32. 32

    Topp, G. C. & Davis, J. L. Soil Sci. Soc. Am. J. 49, 19–24 (1985).

    ADS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nepstad, D., de Carvalho, C., Davidson, E. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing