Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling the size, structure and orientation of semiconductor nanocrystals using metastable phase recrystallization

Abstract

Materials engineering at the nanometre scale should provide smaller technological devices than are currently available1,2. In particular, research on semiconductor nanostructures with size-dependent optical and electronic properties is motivated by potential applications which include quantum-dot lasers and high-speed nonlinear optical switches3,4. Here we describe an approach for controlling the size, orientation and lattice structure of semiconductor nanocrystals embedded in a transparent matrix. We form nanocrystalline precipitates by implanting ions of the semiconductor into a single-crystal alumina substrate and applying thermal annealing5,6,7. Control over the microstructure of the nanocrystals is achieved using substrate amorphization and recrystallization. In essence, the substrate microstructure is manipulated using ion beams to induce changes in impurity solubility, crystal symmetry and cation bonding, which exert a profound influence on the microstructure of the embedded precipitates—a concept familiar in metallurgy8. This approach can be extended to exercise control over virtually any type of precipitate (such as metals, insulators or magnetic clusters) as well as epitaxial thin films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Controlling nanocrystals in alumina.
Figure 2: Microstructure of nanocrystals.
Figure 3: X-ray l -scans from CdSe (4.3 × 1016 cm−2 ) nanocrystals (arbitrary units).

Similar content being viewed by others

References

  1. Service, R. F. Small clusters hit the big time. Science 271, 920–922 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Siegal, R. W. Creating nanophase materials. Sci. Am. 275, 74–79 (1996).

    Article  Google Scholar 

  3. Brus, L. Quantum crystallites and nonlinear optics. Appl. Phys. A53, 465–474 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Nirmal, M. et al . Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Shimizu-Iwayama, T. et al . Visible photoluminescence related to Si precipitates in Si+-implanted SiO2. J. Phys.: Condens. Matter 5, L375–L380 (1993).

    Google Scholar 

  6. White, C. W. et al . Encapsulated nanocrystals and quantum dots formed by ion beam synthesis. Nucl. Instr. Meth. B127/128, 545–552 (1997).

    Article  ADS  Google Scholar 

  7. Min, K. S. et al . The role of quantum-confined excitons vs defects in the visible luminescence of SiO2films containing Ge nanocrystals. Appl. Phys. Lett. 68, 2511–2513 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Reed-Hill, R. E. Physical Metallurgy Principles(Van Nostrand, New York, (1973)).

    Google Scholar 

  9. White, C. W. et al . Ion implantation and annealing of crystalline oxides. Mater. Sci. Rep. 4, 41–146 (1989).

    Article  CAS  Google Scholar 

  10. Yu, N., McIntyre, P. C., Nastasi, M. & Sickafus, K. High-quality epitaxial growth of γ-alumina sapphire induced by ion-beam bombardment. Phys. Rev. B52, 17518–17522 (1995).

    Article  ADS  Google Scholar 

  11. Pope, S. G. & Cochran, J. K. Mechanical properties of silicon ion implanted and annealed sapphire and polycrystalline alumina. J. Mater. Eng. 11, 133–139 (1989).

    Article  CAS  Google Scholar 

  12. Shimizu-Iwayama, T., Niimi, T., Nakao, S. & Saitoh, K. Investigations on the formation of SiO2in Si+-implanted Al2O3. Jpn. J. Appl. Phys. 32, L1451–L1453 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Voorhees, P. W. Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 22, 197–215 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Filby, J. D. & Nielsen, S. Single-crystal films of silicon on insulators. Brit. J. Appl. Phys. 18, 1357–1382 (1967).

    Article  ADS  CAS  Google Scholar 

  15. Bursill, L. A. & Lin, P. J. Monolayer reconstruction on polar surfaces of ruby. Phil. Mag. A60, 307–320 (1989).

    Article  ADS  Google Scholar 

  16. Angell, M. J. et al . Growth of alternating 〈100〉/〈111〉-oriented II–VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates. Appl. Phys. Lett. 64, 3107–3109 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–356 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Bawendi, M. G., Kortan, A. R., Steigerwald, M. L. & Brus, L. X-ray structural characterization of larger CdSe semiconductor clusters. J. Chem. Phys. 91, 7282–7290 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Bandaranayake, R. J. et al . Structural phase behavior in II–VI semiconductor nanoparticles. Appl. Phys. Lett. 67, 831–833 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Chou, T. C. & Nieh, T. G. Microstructural characteristics of layered metastable phases. Scripta Met. Mater. 26, 1895–1900 (1992).

    Article  CAS  Google Scholar 

  21. Lee, W. E., Jenkins, M. L. & Pells, G. P. The influence of helium doping on the damage microstructure of heavy-ion irradiated α-Al2O3. Phil. Mag. A51, 639–659 (1985).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by Division of Materials Sciences, US Department of Energy, with Lockheed Martin Energy Research Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Budai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budai, J., White, C., Withrow, S. et al. Controlling the size, structure and orientation of semiconductor nanocrystals using metastable phase recrystallization. Nature 390, 384–386 (1997). https://doi.org/10.1038/37079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37079

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing