Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean

Abstract

In 1995, an expedition on board the research vessel FS Polarstern explored the impact site of the Eltanin asteroid in the Southern Ocean, the only known asteroidimpact into a deep ocean basin. Analyses of the geological record of the impact region place the event in the late Pliocene (2.15 Myr) and constrain thesize of the asteroid to be >1 km. The explosive force inferred for this event places it at the threshold of impacts believed to have global consequences, and its studyshould therefore provide a baseline for the reconstruction and modelling of similar events, which are common on geological timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the Bellingshausen Sea tectonic setting showing major fracture and subduction zones; the Pacific–Aluk portion of the Antarctic plate is shaded and shows magnetic lineations in accordance with ref. 8 (a).
Figure 2: Parasound echosounding of the sediments along the transect PSL-1 to the north of the seamounts (Fig. 1b).
Figure 3: Piston cores PS-27091-1, PS2708-1 and PS2704-1 provide a depth transect from the top of the San Martin seamounts to the abyssal floor in the north (Fig. 1b).
Figure 4: Age determination of the impact event and reworked impact deposits based on combined magnetostratigraphy and biostratigraphy of PS2704-1, PS2708-1 and PS2709-1.
Figure 5: Details of the three sedimentary units formed by the impact illustrated by X-ray radiographs (compare Fig. 3).
Figure 6: Core PS2708-1 carbonate content in impact-related sediment units, and grain size distribution in an expanded section of the laminated SU III and the ejecta-rich sediments of SU II (Fig. 3).

Similar content being viewed by others

References

  1. Grieve, R. A. F. & Shoemaker, E. M. in Hazards Due to Comets and Asteroids(ed. Gehrels, T.) 417–462 (Univ. Arizona Press, (1994)).

    Google Scholar 

  2. Kyte, F. T., Zhou, Z. & Wasson, J. T. High noble metal concentrations in a late Pliocene sediment. Nature 292, 417–420 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Kyte, F. T., Zhou, L. & Wasson, J. T. New evidence on the size and possible effects of a late Pliocene oceanic impact. Science 241, 63–65 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Kyte, F. T. & Brownlee, D. E. Unmelted meteoritic debris in the Late Pliocene Ir anomaly: evidence for the impact of a nonchrondritic asteroid. Geochim. Cosmochim. Acta 49, 1095–1108 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Margolis, S. V., Claeys, P. & Kyte, F. T. Microtektites, microkrystites and spinels from a late Pliocene asteroid impact in the Southern Ocean. Science 251, 1594–1597 (1990).

    Article  ADS  Google Scholar 

  6. Kyte, F. T. & Smit, J. Regional variation in spinel compositions: an important key to the Cretaceous–Tertiary event. Geology 14, 485–487 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Melosh, H. J. Impact Cratering(Oxford Univ. Press, New York, (1989)).

    Google Scholar 

  8. Cande, S. C., Herron, E. M. & Hall, B. R. The early Cenozoic history of the southeast Pacific. Earth Planet. Sci. Lett. 57, 63–74 (1982).

    Article  ADS  Google Scholar 

  9. Gersonde, R. & Barcena, M. A. Revision of the upper Pliocene–Pleistocene diatom biostratigraphy for the northern belt of the Southern Ocean. Micropaleontology(in the press).

  10. Cande, S. C. & Kent, D. V. J. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Geophys. Res. 100(B4), 6093–6095 (1995).

    Article  ADS  Google Scholar 

  11. Anonymous. Marine Geology USNS Eltanin Cruses 9–15, coredescriptionandlocations. (Contr. 11, Sedimentology Research Laboratory, Dept. of Geology, Florida State Univ., (1965)).

  12. Wei, W. Calibration of upper Eocene–lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography 8, 85–99 (1992).

    Article  ADS  Google Scholar 

  13. Gorbunova, Z. N. Clay-size minerals from cores of the southeast Pacific Ocean. Init. Rep. DSDP 35, 479–488 (1976).

    Google Scholar 

  14. O'Keefe, J. D. & Ahrens, T. Impact mechanics of the Cretaceous–Tertiary extinction bolide. J. Lunar Planet. Sci. 12, 785–787 (1981).

    ADS  Google Scholar 

  15. Chapman, C. R. & Morrison, D. Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367, 33–40 (1994).

    Article  ADS  Google Scholar 

  16. Toon, O. B., Zahnie, K., Morrison, D., Turco, R. P. & Covey, C. Environmental perturbances caused by the impacts of asteroids and comets. Rev. Geophys. 35, 41–78 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Hills, J. G., Nemchinov, I. V., Popov, S. P. & Teterev, A. V. in Hazards Due to Comets and Asteroids(ed. Gehrels, T.) 779–789 (Univ. Arizona Press, (1994)).

    Google Scholar 

  18. Muizon, C. de. Les vertébrés fossiles de la formation Pisco (Pérou). 1: Deux nouveaux Monochinae (Phocidae, Mammalia) du Pliocène de Sud-Sacaco.(Inst. Francais d'études Andines, Édit. recherche sur les Civilisations, Mémoire 6, Paris, (1981)).

  19. Quilty, P. G. in Recent Progress in Antarctic Earth Science(ed. Yoshida, Y.) 699–705 (Terra Scientific, Tokyo, (1992)).

  20. Hall, B. L., Denton, G. H., Lux, D. R. & Schlüchter, C. Pliocene paleoenvironment and Antarctic ice sheet behavior: evidence from Wright Valley. J. Geol. 105, 285–294 (1997).

    Article  ADS  Google Scholar 

  21. Bruno, L. A., Baur, H., Graf, T., Schlüchter, C., Signer, P. & Wieler, R. Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth Planet. Sci. Lett. 147, 37–54 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Harwood, D. M. Diatoms from the Sirius Formation, Transantarctic Mountains. Antarctic J. 18, 98–100 (1983).

    Google Scholar 

  23. Webb, P.-N., Harwood, D. M., McKelvey, B. C., Mercer, J. H. & Stott, L. D. Cenozoic marine sedimentation and ice volume variation on the east Antarctic craton. Geology 12, 287–291 (1984).

    Article  ADS  Google Scholar 

  24. Webb, P.-N. & Harwood, D. M. Late Cenozoic glacial history of the Ross Embayment, Antarctica. Quat. Sci. Rev. 10, 215–223 (1991).

    Article  ADS  Google Scholar 

  25. Barrett, P. J., Adams, C. J., McIntosh, W. C., Swisher, C. C. II & Wilson, G. S. Geochronological evidence supporting Antarctic deglaciation three million years ago. Nature 359, 816–818 (1992).

    Article  ADS  Google Scholar 

  26. Sugden, D. E., Marchant, D. R., Potter, N. J, Souchez, R. A., Denton, G. H., Swisher, C. C. II & Tison, J.-L. Preservation of Miocene glacier ice in east Antarctica. Nature 376, 412–414 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Kennett, J. P. & Hodell, D. A. Evidence for relative climatic stability on Antarctica during the early Pliocene: a marine perspective. Geograf. Ann. 75, 205–220 (1993).

    Article  Google Scholar 

  28. Kellogg, D. E. & Kellogg, T. B. Non-marine diatoms in the Sirius Formation. Antarctic J. 19, 44–45 (1984).

    Google Scholar 

  29. Barrett, P. J., Bleakly, N. L., Dickinson, W. W., Hannah, M. J. & Harper, M. A. Distribution of siliceous microfossils on Mount Feather, Antarctica, and the age of the Sirius Group. Proc. Terra Antarctica 3, (in the press).

  30. Burckle, L. H. & Potter, N. Jr. Pliocene–Pleistocene diatoms in Paleozoic and Mesozoic sedimentary and igneous rocks from Antarctica: a Sirius problem solved. Geology 24, 235–238 (1996).

    Article  ADS  Google Scholar 

  31. Stroeven, A. P., Pentrice, M. L. & Kleman, J. On marine microfossil transport and pathways in Antarctica during the late Neogene: evidence from the Sirius Group at Mount Fleming. Geology 24, 727–730 (1996).

    Article  ADS  Google Scholar 

  32. Shackleton, N. J., Hall, M. A. & Pate, D. Pliocene stable isotope stratigraphy of Site 846. Proc. ODP Sci. Res. 138, 337–355 (1995).

    Google Scholar 

  33. Raffi, I., Backman, J., Rio, D., Shackleton, N. J. Plio-Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677. Paleoceanography 8, 387–408 (1993).

    Article  ADS  Google Scholar 

  34. Perch-Nielsen, K. in Plankton Stratigraphy Vol. 1(eds Bolli, H. B., Saunders, J. B. & Perch-Nielsen, K.) 427–554 (Cambridge Univ. Press, (1985)).

    Google Scholar 

  35. Berggren, W. A., Kent, D. V., Swisher, C. C. II & Aubry, M.-P. in Geochronology Timescales and Global Stratigraphic Correlation(eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 129–212 (Spec. Publ. 54, Soc. of Economic Paleontologists and Mineralogists, (1995)).

    Google Scholar 

Download references

Acknowledgements

This research was supported by Acciones Integradas grants to R.G. and J.A.F., and an NSF grant to F.T.K. and J.A.B. We thank the crew of RV Polarstern for their substantial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gersonde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gersonde, R., Kyte, F., Bleil, U. et al. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature 390, 357–363 (1997). https://doi.org/10.1038/37044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/37044

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing