Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relation between fractal dimension and spatial correlation length for extensive chaos

Abstract

SUSTAINED nonequiibrium systems can be characterized by a fractal dimension D0, which can be considered to be a measure of the number of independent degrees of freedom1. The dimension D is usually estimated from time series2 but the available algorithms are unreliable and difficult to apply when D is larger than about 5 (refs 3,4). Recent advances in experimental technique5–8 and in parallel computing have now made possible the study of big systems with large fractal dimensions, raising new questions about what physical properties determine D and whether these physical properties can be used in place of time-series to estimate large fractal dimensions. Numerical simulations9–11 suggest that sufficiently large homogeneous systems will generally be extensively chaotic12, which means that D increases linearly with the system volume V. Here we test an hypothesis that follows from this observation: that the fractal dimension of extensive chaos is determined by the average spatial disorder as measured by the spatial correlation length ε associated with the equal-time two-point correlation function —a measure of the correlations between different regions of the system. We find that the hypothesis fails for a representative spatiotemporal chaotic system. Thus, if there is a length scale that characterizes homogeneous extensive chaos, it is not the characteristic length scale of spatial disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eckmann, J.-P. & Ruelle, D. Rev. mod. Phys. 57, 617–656 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Casdagli, M. et al. in Applied Chaos (eds Kim, J. H. & Stringer, J.) 335–380 (Wiley, Boston, 1992).

    Google Scholar 

  3. Ruelle, D. Proc. R. Soc. A427, 241–248 (1990).

    Article  ADS  Google Scholar 

  4. Lorenz, E. N. Nature 353, 241–243 (1991).

    Article  ADS  Google Scholar 

  5. Assenheimer, M. & Steinberg, V. Nature 367, 345–347 (1994).

    Article  ADS  Google Scholar 

  6. Gollub, J. P. & Ramshanker, R. in New Perspectives in Turbulence (eds Orszag, S. & Sirovich, L.) 165–194 (Springer, Berlin, 1990).

    Google Scholar 

  7. Ouyang, Q. & Swinney, H. L. Chaos 1, 411–420 (1991).

    Article  ADS  Google Scholar 

  8. Arecchi, F. T. et al. Physica D61, 25–39 (1992).

    Google Scholar 

  9. Manneville, P., Liapunov Exponents for the Kuramoto-Sivashinsky Model, 319–326 (Lecture Notes in Physics Vol. 230, Springer, Berlin, 1985).

    Google Scholar 

  10. Grassberger, P. Physica Scripta 40, 346–353 (1989).

    Article  ADS  Google Scholar 

  11. Sirovich, L., Rodriguez, J. D. & Knight, B. Physica D43, 63–76 (1990).

    MathSciNet  Google Scholar 

  12. Cross, M. C. & Hohenberg, P. C. Rev. mod. Phys. 65, 851–1112 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Ruelle, D. Commun. math. Phys. 87, 287–302 (1982).

    Article  ADS  Google Scholar 

  14. Bayly, P. V. et al. J. cardiovasc. Electrophysiol. 4, 533–546 (1993).

    Article  CAS  Google Scholar 

  15. Kaplan, D. & Cohen, R. Circulation Res. 67, 886–892 (1990).

    Article  CAS  Google Scholar 

  16. Bhagavatula, R., Grinstein, G., He, Y. & Jayaprakash, C. Phys. Rev. Lett. 69, 3483–3486 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Torcini, A., Politi, A., Puccioni, G. P. & D'Alessandro, G. Physica D53, 85–101 (1991).

    MathSciNet  Google Scholar 

  18. Glazier, J. A., Kolodner, P. & Williams, H. J. statist. Phys. 64, 945–960 (1991).

    Article  ADS  Google Scholar 

  19. Ning, L. & Ecke, R. E. Phys. Rev. E47, 3326–3333 (1993).

    ADS  CAS  Google Scholar 

  20. Shraiman, B. I. et al. Physica D57, 241–248 (1992).

    MathSciNet  Google Scholar 

  21. Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. Spectral Methods in Fluid Dynamics (Springer, New York, 1988).

    Book  Google Scholar 

  22. Parker, T. S. & Chua, L. O. Practical Numerical Algorithms for Chaotic Systems (Springer, New York, 1989).

    Book  Google Scholar 

  23. Miller, J. & Huse, D. A. Phys. Rev. E48, 2528–2535 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egolf, D., Greenside, H. Relation between fractal dimension and spatial correlation length for extensive chaos. Nature 369, 129–131 (1994). https://doi.org/10.1038/369129a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369129a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing