Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Development of obesity in transgenic mice after genetic ablation of brown adipose tissue

Abstract

BROWN adipose tissue, because of its capacity for uncoupled mitochondria! respiration1,2, has been implicated as an important site of facultative energy expenditure3–5. This has led to speculation that this tissue normally functions to prevent obesity3–5. Attempts to ablate or denervate brown adipose tissue surgically have been uninformative because it exists in diffuse depots and has substantial capacity for regeneration and hypertrophy6. Here we have used a transgenic toxigene approach7,8 to create two lines of transgenic mice with primary deficiency of brown adipose tissue. At 16 days, both lines have decreased brown fat and obesity. In one line, brown fat subsequently regenerates and obesity resolves. In the other line, the deficiency persists and obesity, with its morbid complications, advances. Obesity develops in the absence of hyperphagia, indicating that brown fat deficient mice have increased metabolic efficiency. As obesity progresses, transgenic animals develop hyperphagia. This study supports a critical role for brown adipose tissue in the nutritional homeostasis of mice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Nicholls, D. G. & Locke, R. M. Physiol. Rev. 64, 1–64 (1984).

    CAS  Article  Google Scholar 

  2. 2

    Klaus, S., Casteilla, L., Bouillaud, F. & Ricquier, D. Int. J. Biochem. 23, 791–801 (1991).

    CAS  Article  Google Scholar 

  3. 3

    Rothwell, N. J. & Stock, M. J. Nature 281, 31–35 (1979).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Trayhurn, P. & Mercer, S. W. Biochem Soc. Trans. 14, 236–239 (1986).

    CAS  Article  Google Scholar 

  5. 5

    Himms-Hagen, J. Prog. Lipid Res. 28, 67–115 (1989).

    CAS  Article  Google Scholar 

  6. 6

    Rothwell, N. J. & Stock, M. J. Am. J. Physiol. 257, R253–R258 (1989).

    CAS  PubMed  Google Scholar 

  7. 7

    Palmiter, R. D. et al. Cell 50, 435–443 (1987).

    CAS  Article  Google Scholar 

  8. 8

    Breitman, M. L. et al. Science 238, 1563–1565 (1987).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Jacobsson, A., Stadler, U., Glotzer, M. A. & Kozak, L. P. J. biol. Chem. 260, 16250–16254 (1985).

    CAS  PubMed  Google Scholar 

  10. 10

    Dubuc, P. U. Metabolism 25, 1567–1574 (1976).

    CAS  Article  Google Scholar 

  11. 11

    Coleman, D. L. Diabetologia 14, 141–148 (1978).

    CAS  Article  Google Scholar 

  12. 12

    Cameron, D. P., Cutbush, L. & Opat, F. Clin. exp. Pharmac. Physiol. 5, 41–51 (1978).

    CAS  Article  Google Scholar 

  13. 13

    Breitman, M. L. & Bernstein, A. in Transgenic Animals (eds Grosveld, F. & Kollias, G.) 127–145 (Academic, Boston, 1992).

    Google Scholar 

  14. 14

    Bray, G. A. & York, D. A. Physiol. Rev. 59, 719–809 (1979).

    CAS  Article  Google Scholar 

  15. 15

    Holloway, B. R. et al. Br. J. Pharmac. 104, 97–104 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Granneman, J. G., Lahners, K. N. & Chaudhry, A. Molec. Pharmac. 40, 895–899 (1991).

    CAS  Google Scholar 

  17. 17

    Muzzin, P. et al. J. biol. Chem. 266, 24053–24058 (1991).

    CAS  PubMed  Google Scholar 

  18. 18

    Nahmias, C. et al. EMBO J. 10, 3721–3727 (1991).

    CAS  Article  Google Scholar 

  19. 19

    Bloom, J. D. et al. J. med. Chem. 35, 3081–3084 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Foster, D. O. & Frydman, M. L. Can. J. Physiol. Pharmac. 57, 257–270 (1979).

    CAS  Article  Google Scholar 

  21. 21

    Davis, T. R. A., Johnston, D. R., Bell, F. C. & Cremer, B. J. Am. J. Physiol. 198, 471–475 (1960).

    CAS  PubMed  Google Scholar 

  22. 22

    Bergmeyer, H. U. Methods in Enzymatic Analysis 2nd edn (Academic, London, 1974).

    Google Scholar 

  23. 23

    Boyer, B. B. & Kozak, L. P. Molec. cell. Biol. 11, 4147–4156 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Maxwell, I. H., Maxwell, F. & Glode, L. M. Cancer Res. 46, 4660–4664 (1986).

    CAS  PubMed  Google Scholar 

  25. 25

    Maxwell, F., Maxwell, I. H. & Glode, L. M. Molec. cell. Biol. 7, 1576–1579 (1987).

    CAS  Article  Google Scholar 

  26. 26

    Breitman, M. L., Rombola, H., Maxwell, I. H., Klintworth, G. K. & Berstein, A. Molec. cell. Biol. 10, 474–479 (1990).

    CAS  Article  Google Scholar 

  27. 27

    Salmon, D. M. W. & Flatt, J. P. Int. J. Obesity 9, 443–449 (1985).

    CAS  Google Scholar 

  28. 28

    Desautels, M., Zaror-Behrens, G. & Himms-Hagen, J. Can. J. Biochem. 56, 378–383 (1978).

    CAS  Article  Google Scholar 

  29. 29

    Ma, S. W. Y. & Foster, D. O. Can. J. Physiol. Pharmac. 64, 1252–1258 (1986).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lowell, B., S-Susulic, V., Hamann, A. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993). https://doi.org/10.1038/366740a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing