Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of turns in the structure of an α-helical protein

Abstract

THE turns joining segments of secondary structure have been proposed to be key elements in dictating the folded structures of native proteins1–9. An alternative view assumes that turns play a passive role and are merely default structures that occur as a consequence of interactions between antiparallel segments of secondary structure, with chain reversal being dictated by the context surrounding the turn and not by the sequence of the turn itself10,11. The solvent-exposure of turns and their tolerance to evolutionary variance suggests that they may have little or no effect on the formation of native structures. Previous investigations have focused on various types of β-turns that connect antiparallel (β-strands1–3,12,13, with comparatively little reported on the structural role of interhelical turns. Here we probe the structural importance of such a turn in an antiparallel 4-helix bundle by randomly substituting an interhelical tripeptide in cytochrome b-562 with many different amino-acid sequences. Thirty-one of the resulting substituted proteins were characterized and all of them were shown to fold into stable, native-like structures. These results suggest that this interhelical turn does not does not play a dominant role in determining the folded structure of this antiparallel 4-helix bundle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chou, P. Y. & Fasman, G. D. Biochemistry 13, 222–245 (1974).

    Article  CAS  Google Scholar 

  2. Fasman, G. D. Prediction of Protein Structure and the Principles of Protein Conformation (Plenum, NewYork, 1989).

    Book  Google Scholar 

  3. Sibanda, B. L., Blundell, T. L. & Thornton, J. M. J. molec. Biol. 206, 759–777 (1989).

    Article  CAS  Google Scholar 

  4. Skolnick, J. & Kolinski, A. J. molec. Biol. 212, 787–817 (1990).

    Article  CAS  Google Scholar 

  5. Sikorski, A. & Skolnick, J. J. molec. Biol. 212, 819–836 (1990).

    Article  CAS  Google Scholar 

  6. Chou, K. C. Maggiora, G. M. & Scheraga, H. A. Proc. natn. Acad. Sci. U.S.A. 89, 7315–7319 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Dyson, J. H., Rance, M., Houghton, R.A., Lerner, R. A. & Wright, P. E. J. molec. Biol. 201, 161–200 (1988).

    Article  CAS  Google Scholar 

  8. Wright, P. E., Dyson, J. H. & Lerner, R. A. Biochemistry 27, 7167–7175 (1988).

    Article  CAS  Google Scholar 

  9. Milburn, P. J., Meinwald, Y. C., Takahashi, S., Ooi, T. & Scheraga, H. A. Int. J. Pep. Prot. Res. 31, 311–321 (1988).

    Article  CAS  Google Scholar 

  10. Kabsch, W. & Sander, C. Proc. natn. Acad. Sci. U.S.A. 81, 1075–1078 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Argos, P. J. molec. Biol. 197, 331–348 (1987).

    Article  CAS  Google Scholar 

  12. Rose, G. D., Gierasch, L. M. & Smith, J. A. Adv. Prot. Chem. 37, 1–109 (1985).

    CAS  Google Scholar 

  13. Hynes, T. R., Kautz, R. A., Goodman, M. A., Gill, J. F. & Fox, R. O. Nature 339, 73–76 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Mathews, F. S., Bethge, P. H. & Czerwinski, E. W. J. biol. Chem 254, 1699–1706 (1979).

    CAS  PubMed  Google Scholar 

  15. Lederer, F., Glatigny, A., Bethge, P. H., Bellamy, H. D. & Mathews, F. S. J. molec. Biol. 148, 427–448 (1981).

    Article  CAS  Google Scholar 

  16. Eisenbeis, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 82, 1084–1088 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Wells, J. A., Vasser, M. & Powers, D. B. Gene 34, 315–323 (1985).

    Article  CAS  Google Scholar 

  18. Reidhaar-Olson, J. F. et al. Meth. Enzym. 208, 564–586 (1991).

    Article  CAS  Google Scholar 

  19. Greenfield, N. & Fasman, G. D. Biochemistry 8, 4108–4116 (1969).

    Article  CAS  Google Scholar 

  20. Itagaki, E. & Hager, L. P. J. biol. Chem. 241, 3687–3695 (1966).

    CAS  PubMed  Google Scholar 

  21. Fisher, M.T. Biochemistry 30, 10013–10018 (1991).

    Google Scholar 

  22. Young, H. D. Statistical Treatment Of Experimental Data Ch.2 (McGraw-Hill, New York, 1962).

    Google Scholar 

  23. Hertzberg, O. & Moult, J. Proteins: Structure. Function and Genetics 11, 223–229 (1990).

    Article  Google Scholar 

  24. Shortle, D. & Meeker, A. M. Biochemistry 28, 936–945 (1989).

    Article  CAS  Google Scholar 

  25. Dill, K. A. & Shortle, D. Rev. Biochem. 60, 795–825 (1991).

    Article  CAS  Google Scholar 

  26. Ramakrishnan, C. & Ramachandran, G. N. Biophys. J. 5, 909–933 (1965).

    Article  ADS  CAS  Google Scholar 

  27. Richardson, J. S. & Richardson, D. C. in Prediction of Protein Structure and the Principles of Protein Conformation (ed. Fasman, G.) 1–98 (Plenum, NewYork, 1989).

    Book  Google Scholar 

  28. Regan, L. & DeGrado, W. F. Science 241, 976–978 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Fedorov, A. N. et al. J. molec. Biol. 225, 927–931 (1992).

    Article  CAS  Google Scholar 

  30. Hecht, M. H., Richardson, J. S., Richardson, D. C. & Ogden, R. C. Science 249, 884–891 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Hahn, K. W., Klis, W. A. & Stewart, J. M. Science 248, 1544–1547 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990).

    Google Scholar 

  33. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  34. Bernstein, F. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  35. Dent, L. & Cortese, R. Meth. Enzym. 155, 111–119 (1987).

    Article  Google Scholar 

  36. Nikkila, H., Gennis, R. & Sligar, S. G. Eur. J. Biochem. 202, 309–313 (1991).

    Article  CAS  Google Scholar 

  37. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunet, A., Huang, E., Huffine, M. et al. The role of turns in the structure of an α-helical protein. Nature 364, 355–358 (1993). https://doi.org/10.1038/364355a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364355a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing