Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fission yeast chkl protein kinase links the rad checkpoint pathway to cdc2

Abstract

THE dependence of cell-cycle progression on the integrity of the genome has been described as checkpoint control1,2. A number of mutants of the fission yeast Schizosaccharomyces pombe, selected for their sensitivity to DNA damage caused by radiation (rad mutants) or to the DNA synthesis inhibitor hydroxyurea (hus mutants) have been classified as checkpoint mutants because they fail to arrest the cell cycle in response to DNA damage or incompletely replicated DNA3–6. Coupling of the checkpoint pathways that monitor DNA repair a'nd replication to control of the cell cycle is essential. In a search for components that interact with the cell-cycle regulatory kinase p34cdc2, we have identified a novel fission yeast protein kinase homologue which is involved in cell-cycle arrest when DNA damage has occurred or when unligated DNA is present. We have called the gene encoding this protein chkl for checkpoint kinase. Multiple copies of chkl partially rescue the ultraviolet sensitivity of rad 1-1, a mutant deficient in checkpoint control3–5. Identification of a gene involved in check-point control as a rescue of a cdc2 mutant links the rad1-dependent DNA-damage-sensing pathway and p34cdc2 activity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Hartwell, L. H. & Weinert, T. A. Science 246, 629–634 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Murray, A. W. Nature 359, 599–604 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Phipps, J., Nasim, A. & Miller, D. R. Adv. Genet 23, 1–72 (1985).

    Article  CAS  Google Scholar 

  4. Rowley, R., Subramani, S. & Young, P. G. EMBO J. 11, 1335–1342 (1992).

    Article  CAS  Google Scholar 

  5. Al-Khodairy, F. & Carr, A. M. EMBO J. 11, 1343–1350 (1992).

    Article  CAS  Google Scholar 

  6. Enoch, T., Carr, A. M. & Nurse, P. Genes Dev. 6, 2035–2046 (1992).

    Article  CAS  Google Scholar 

  7. Draetta, G. Trends biochem. Sci. 15, 378–382 (1990).

    Article  CAS  Google Scholar 

  8. Nurse, P. Nature 344, 503–508 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Russell, P. & Nurse, P. Cell 45, 145–153 (1986).

    Article  CAS  Google Scholar 

  10. Gould, K. L., Moreno, S., Tonks, N. K. & Nurse, P. Science 250, 1573–1576 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Dunphy, W. G. & Kumagai, A. Cell 67, 189–196 (1991).

    Article  CAS  Google Scholar 

  12. Gautier, J., Solomon, M. J., Booher, R. N., Bazan, J. F. & Kirschner, M. W. Cell 67, 197–211 (1991).

    Article  CAS  Google Scholar 

  13. Russell, P. & Nurse, P. Cell 49, 559–567 (1987).

    Article  CAS  Google Scholar 

  14. Lundgren, K. et al. Cell 64, 1111–1122 (1991).

    Article  CAS  Google Scholar 

  15. Featherstone, C. & Russell, P. Nature 349, 808–811 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Hanks, S. K. & Quinn, A. M. Meth. Enzym. 200, 38–62 (1991).

    Article  CAS  Google Scholar 

  17. Weinert, T. A. & Hartwell, L. H. Science 246, 629–634 (1989).

    Article  ADS  Google Scholar 

  18. Nasmyth, K. A. Cell 12, 1109–1120 (1977).

    Article  CAS  Google Scholar 

  19. Pearson, W. R. & Lippman, D. J. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Cottarel, G., Deuschle, U. & Beach, D. Gene (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walworth, N., Davey, S. & Beach, D. Fission yeast chkl protein kinase links the rad checkpoint pathway to cdc2. Nature 363, 368–371 (1993). https://doi.org/10.1038/363368a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363368a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing