Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells

Abstract

How does cyclic AMP potentiate insulin secretion from pancreatic islet β-cells? This question is fundamental to understanding how hormones such as glucagon, which elevates cAMP1, stimulate insulin secretion and so contribute to the normal secretory response of the islet2,3. It is well established that a rise in the cytoplasmic Ca2+ concentration ([Ca2+]i) is essential for insulin secretion4 and therefore cAMP has been proposed to act by elevating [Ca2+i. But studies on permeabilized β-cells indicate that cAMP increases insulin release even when [Ca2+]i is held constant5,6. We have used microfluorimetry and the patch-clamp technique to measure changes simultaneously in Ca2+ currents, [Ca2+]i and exocytosis7–9 in a single β-cell in response to cAMP. We show here that cAMP, through activation of protein kinase A, increases Ca2+-influx through voltage-dependent L-type Ca2+ channels, thereby elevating [Ca2+]i and accelerating exocytosis. More importantly, cAMP also promotes insulin release by a direct interaction with the secretory machinery, which accounts for as much as 80% of its effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rasmussen, H., Zawalich, K. S., Ganesan, S., Calle, R. & Zawalich, W. S. Diabetes Care 13, 655–666 (1990).

    Article  CAS  Google Scholar 

  2. Pipeleers, D. J., In't Veld, P. A., Maes, E. & van de Winkel, M. Proc. natn. Acad. Sci. U.S.A. 79, 7322–7325 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Pipeleers, D. J. et al. Endocrinology 117, 824–833 (1985).

    Article  CAS  Google Scholar 

  4. Prentki, M. & Matschinsky, F. M. Physiol. Rev. 67, 1185–1249 (1987).

    Article  CAS  Google Scholar 

  5. Jones, P. M., Salmon, D. M. W. & Howell, S. L. Biochem. J. 254, 397–403 (1988).

    Article  CAS  Google Scholar 

  6. Jones, P. M., Persaud, S. J. & Howell, S. L. Biochem. J. 285, 973–978 (1992).

    Article  CAS  Google Scholar 

  7. Marty, A. & Neher, E. Proc. natn. Acad. Sci. U.S.A. 79, 6712–6716 (1982).

    Article  ADS  Google Scholar 

  8. Joshi, C. & Fernandez, J. Biophys. J. 53, 885–892 (1988).

    Article  CAS  Google Scholar 

  9. Fidler Lim, N., Nowycky, M. C. & Bookman, R. J. Nature 344, 449–451 (1990).

    Article  ADS  Google Scholar 

  10. Horn, R. & Marty, A. J. gen. Physiol. 92, 145–159 (1988).

    Article  CAS  Google Scholar 

  11. Armstrong, D. L. Trends Neurosci. 12, 1–10 (1989).

    Article  Google Scholar 

  12. Henquin, J. C. Archiv. Int. Physiol. Biochim. 93, 37–48 (1985).

    CAS  Google Scholar 

  13. Ashcroft, F. M. & Rorsman, P. Prog. Biophys. molec. Biol. 54, 97–143 (1989).

    Article  Google Scholar 

  14. De Wit, R. W. J. et al. Eur. J. Biochem. 142, 255–260 (1984).

    Article  CAS  Google Scholar 

  15. Rorsman, P., Ashcroft, F. M. & Trube, G. Pflügers Arch. 412, 587–603 (1988).

    Article  Google Scholar 

  16. Hughes, S. J., Chalk, J. G. & Ashcroft, S. J. H. Molec. cell. Endocrinol. 65, 35–41 (1989).

    Article  CAS  Google Scholar 

  17. Persaud, S. J., Jones, P. M. & Howell, S. L. Biochem. biophys. Res. Commun. 173, 833–839 (1990).

    Article  CAS  Google Scholar 

  18. Sikdar, S. K., Zorec, R. & Mason, W. T. FEBS Lett. 273, 150–154 (1990).

    Article  CAS  Google Scholar 

  19. Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Science 259, 780–785 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Rorsman, P. & Trube, G. J. Physiol., Lond. 374, 531–550 (1986).

    Article  CAS  Google Scholar 

  21. Ämmälä, C., Bokvist, K., Galt, S. & Rorsman, P. Biochim. biophys. Acta 1092, 347–349 (1991).

    Article  Google Scholar 

  22. Rorsman, P., Ämmälä, C., Berggren, P.-O., Bokvist, K. & Larsson, O. EMBO J. 11, 2877–2884 (1992).

    Article  CAS  Google Scholar 

  23. Ämmälä, C., Eliasson, L., Bokvist, K., Larsson, O., Ashcroft, F. M. & Rorsman, P. J. Physiol., Lond. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ämmälä, C., Ashcroft, F. & Rorsman, P. Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells. Nature 363, 356–358 (1993). https://doi.org/10.1038/363356a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363356a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing