Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thymocyte apoptosis induced by p53-dependent and independent pathways


DEATH by apoptosis is characteristic of cells undergoing deletion during embryonic development, T- and B-cell maturation and endocrine-induced atrophy1. Apoptosis can be initiated by various agents1–5 and may be a result of expression of the oncosuppressor gene p53 (refs 6–8). Here we study the dependence of apoptosis on p53 expression in cells from the thymus cortex. Short-term thymocyte cultures were prepared from mice constitutively heterozygous or homozygous for a deletion in the p53 gene introduced into the germ line after gene targeting. Wild-type thymocytes readily undergo apoptosis after treatment with ionizing radiation, the glucocorticoid methylprednisolone, or etoposide (an inhibitor of topoisomerase II), or after Ca2+-dependent activation by phorbol ester and a calcium ionophore. In contrast, homozygous null p53 thymocytes are resistant to induction of apoptosis by radiation or etoposide, but retain normal sensitivity to glucocorticoid and calcium. The time-dependent apoptosis that occurs in untreated cultures is unaffected by p53 status. Cells heterozygous for p53 deletion are partially resistant to radiation and etoposide. Our results show that p53 exerts a significant and dose-dependent effect in the initiation of apoptosis, but only when it is induced by agents that cause DNA-strand breakage.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Arends, M. J. & Wyllie, A. H. Int. Rev. exp. Path. 32, 223–254 (1991).

    Article  CAS  Google Scholar 

  2. Smith, C. A., Williams, G. T., Kingston, R., Jenkinson, E. J. & Owen, J. J. T. Nature 337, 181–184 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Wyllie, A. H. Nature 284, 555–556 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Sellins, K. S. & Cohen, J. J. J. Immun. 139, 3199–3206 (1987).

    CAS  PubMed  Google Scholar 

  5. McConkey, D. J., Orrenius, S. & Jondal, M. Immun, Today 11, 120–121 (1990).

    Article  CAS  Google Scholar 

  6. Ryan, J. J., Danish, R., Gottlieb, C. A. & Clarke, M. F. Molec. cell. Biol. 13, 711–719 (1993).

    Article  CAS  Google Scholar 

  7. Yonish-Rouach, E. et al. Nature 352, 345–347 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Shaw, P. et al. Proc. natn. Acad. Sci. U.S.A. 89, 4495–4499 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Hooper, M. L., Hardy, K., Handyside, A., Hunter, S. & Monk, M. Nature 326, 292–295 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Yewdell, J. W., Gannon, J. V. & Lane, D. P. J. Virol. 59, 444–452 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Clarke, A. R. et al. Nature 359, 328–330 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Walker, P. R. et al. Cancer Res. 51, 1078–1085 (1991).

    CAS  PubMed  Google Scholar 

  13. Zhivotovsky, B. D., Seiliev, A. A. & Hanson, K. P. Int. J. Rad. Biol. 42, 199–204 (1982).

    CAS  Google Scholar 

  14. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Cancer Res. 51, 5304–5311 (1991).

    Google Scholar 

  15. Kuerbitz, S. J., Plunkett, B. S., Walsh, M. V. & Kastan, M. B. Proc. natn. Acad. Sci. U.S.A. 89, 7491–7495 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Roy, C. et al. Expl. Cell Res. 200, 416–424 (1992).

    Article  CAS  Google Scholar 

  17. Bertrand, R. Sarang, M. Jenkin, J., Kerrigan, D. & Pommier, Y. Cancer Res. 51, 6280–6285 (1991).

    CAS  PubMed  Google Scholar 

  18. Fanidi, A., Harrington, E. A. & Evan, G. I. Nature 359, 554–556 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Iseki, R., Mukai, M. & Iwata, M. J. Immun. 147, 4286–4292 (1991).

    CAS  PubMed  Google Scholar 

  20. Wyllie, A. H., Morris, R. G., Smith, A. L. & Dunlop, D. J. J. Path 142, 67–78 (1984).

    Article  CAS  Google Scholar 

  21. Kastan, M. B. et al. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  22. Bienz, B., Zakut-Houri, R., Givol, D. & Oren, M. EMBO J. 3, 2179–2183 (1984).

    Article  CAS  Google Scholar 

  23. McBurney, M. W. et al. Nucleic Acids Res. 19, 5755–5761 (1991).

    Article  CAS  Google Scholar 

  24. Colbere-Garapin, F., Chousterman, S., Horodniceanu, F., Kourilisky, P. & Garapin, A.-X. Proc. natn. Acad. Sci. U.S.A. 76, 3755–3759 (1979).

    Article  ADS  CAS  Google Scholar 

  25. van der Lugt, N., Robanus Maandag, E., te Riele, H., Laird, P. W. & Berns, A. Gene 105, 263–267 (1991).

    Article  CAS  Google Scholar 

  26. Kaster, K. R., Burgett, S. G., Rao, R. N. & Ignolia, T. D. Nucleic Acids Res. 11, 6895–6911 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clarke, A., Purdie, C., Harrison, D. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing