Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia

Abstract

The melting of peridotite in the mantle wedge above subduction zones is generally believed to involve hydrous fluids derived from the subducting slab1. But if mantle peridotite is upwelling within the wedge, melting due to pressure release could also contribute to magma production. Here we present measurements of the volatile content of primitive magmas from Galunggung volcano in the Indonesian arc which indicate that these magmas were derived from the pressure-release melting of hot mantle peridotite. The samples that we have analysed consist of mafic glass inclusions in high-magnesium basalts. The inclusions contain uniformly low H2O concentrations (0.21–0.38 wt%), yet relatively high levels of CO2 (up to 750 p.p.m.) indicating that the low H2O concentrations are primary and not due to degassing of the magma. Results from previous anhydrous melting experiments on a chemically similar Aleutian basalts2 indicate that the Galunggung high-magnesium basalts were last in equilibrium with peridotite at 1,320 °C and 1.2 GPa. These high temperatures at shallow sub-crustal levels (about 300–600 °C hotter than predicted by geodynamic models1,3), combined with the production of nearly H2O-free basaltic melts, provide strong evidence that pressure-release melting due to upwelling in the sub-arc mantle has taken place. Regional low-potassium4 and low-H2O (ref. 5) basalts found in the Cascade arc indicate that such upwelling-induced melting can be widespread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galunggung 1982–83 eruption whole rocks (fields) (ref.7 and this work) and high-Mg-basalt inclusion glasses (filled circles) projected24 from olivine onto the plagioclase-clinopyroxene (cpx)-quartz compositional plane.
Figure 2: Detailed analyses of Galunggung high-Mg basalts and inclusion glasses.

Similar content being viewed by others

References

  1. Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992).

    Article  ADS  Google Scholar 

  2. Draper, D. S. & Johnston, A. D. Anhydrous PT relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib. Mineral. Petrol. 112, 501–519 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Furukawa, Y. Depth of the decoupling plate interface and thermal structure under arcs. J. Geophys. Res. 98, 20005–20013 (1993).

    Article  ADS  Google Scholar 

  4. Bacon, C. R.,et al. Primitive magmas at five Cascade volcanic fields: melts from hot, heterogeneoussub-arcmantle.Can. Mineral. 35, 397–423 (1997).

    CAS  Google Scholar 

  5. Sisson, T. W. & Layne, G. D. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet. Sci. Lett. 117, 619–635 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Sudradjat, A. & Tilling, R. Volcanic hazards in Indonesia: The 1982–83 eruption of Galunggung. Episodes 7, 13–19 (1984).

    Google Scholar 

  7. Gerbe, M.-C.et al. Mineralogical and geochemical evolution of the 1982–1983 Galunggung eruption (Indonesia). Bull. Volcanol. 54, 284–298 (1992).

    Article  ADS  Google Scholar 

  8. Harmon, R. S. & Gerbe, M.-C. The 1982–83 eruption at Galunggung Volcano, Java (Indonesia): Oxygen isotope geochemistry of a chemically zoned magma chamber. J. Petrol. 33, 585–609 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Sobolev, A. V. & Danushevsky, L. V. Petrology and geochemistry of boninites from the north termination of the Tonga Trench: Constraints on the generation conditions of primary high-Ca boninite magmas. J. Petrol. 35, 1183–1211 (1994).

    Article  ADS  Google Scholar 

  10. Sobolev, A. V. & Chaussidon, M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet. Sci. 137, 45–55 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: Applications to degassing. J. Petrol. 36, 1633–1646 (1995).

    CAS  Google Scholar 

  12. Roggensack, K., Hervig, R. L., McKnight, S. B. & Williams, S. N. Explosive basaltic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277, 1639–1642 (1997).

    Article  CAS  Google Scholar 

  13. Holloway, J. R. & Blank, J. G. Applications of experimental results to C-O-H species in natural melts. Rev. Mineral. 30, 187–230 (1994).

    CAS  Google Scholar 

  14. Dixon, J. E., Clague, D. A. & Stolper, E. M. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea volcano, Hawaii. J. Geol. 99, 371–394 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Anderson, A. T. Chlorine, sulfur, and water in magmas and oceans. Geol. Soc. Am. Bull. 85, 1485–1492 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Anderson, A. T. Parental basalts in subduction zones: Implications for continental evolution. J.Geophys. Res. 87, 7047–7060 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Michael, P. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131, 301–320 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Bartels, K. S., Kinzler, R. J. & Grove, T. L. High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib. Mineral. Petrol. 108, 253–270 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Hasegawa, A., Zhao, D., Hori, S., Yamamoto, A. & Horiuchi, S. Deep structure in the northeast Japan arc and its relationship to seismic and volcanic activity. Nature 352, 683–689 (1991).

    Article  ADS  Google Scholar 

  20. Tatsumi, Y., Sakuyama, M., Fukuyama, H. & Kushiro, I. Generation of arc basaltic magmas and thermal structure of the mantle wedge in subduction zones. J. Geophys. Res. 88, 5815–5825 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Johnston, A. D. & Draper, D. S. Near-liquidus phase relations of an anhydrous high-magnesia basalt from the Aleutian Islands: Implications for arc magma genesis and ascent. J. Volcanol. Geotherm. Res. 52, 27–41 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Nye, C. J. & Reid, M. R. Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: Implications for arc magma genesis. J. Geophys. Res. 91, 10271–10287 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Plank, T. & White, W. W. Nb and Ta in arc and mid-ocean ridge basalts. Eos 76, 655 (1995).

    Google Scholar 

  24. Tormey, D. R., Grove, T. L. & Bryan, W. B. Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25° N, mid-Atlantic ridge. Contrib. Mineral. Petrol. 96, 121–139 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Pearce, J. A. in Andesites (ed. Thorpe, R. S.) 525–548 (Wiley, New York, (1982).

    Google Scholar 

  26. Leeman, W. P., Smith, D. R., Hildreth, W., Palacz, Z. & Rodgers, N. Compositional diversity of late Cenozoic basalts in a transect across the southern Washington Cascades: Implications for subduction zone magmatism. J. Geophys. Res. 95, 19561–19582 (1990).

    Article  ADS  Google Scholar 

  27. Ihinger, P. D., Hervig, R. L. & McMillan, P. F. Analytical methods for volatiles in glasses. Rev. Mineral. 30, 67–122 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Tilling and S. Weaver for samples from Galunggung; J. Lowenstern for instruction in FTIR spectroscopy; G. Layne for performing ion-microprobe analyses; and C. Bacon, M. Clynne, T. Crawford and T. Grove for reviews that helped us to clarify our arguments. This work was supported by the USGS Volcano Hazards Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Sisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sisson, T., Bronto, S. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391, 883–886 (1998). https://doi.org/10.1038/36087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36087

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing