Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrical signalling and systemic proteinase inhibitor induction in the wounded plant


THE wound response of several plant species involves the activation of proteinase inhibitor (pin) genes and the accumulation of pin proteins at the local site of injury and systemically throughout the unwounded aerial regions of the plant1,2. It has been suggested that a mobile chemical signal is the causal agent linking the local wound stimulus to the distant systemic response, and candidates such as oligosaccharides3, abscisic acid4 and a polypeptide5,6 have been put forward. But the speed of transmission is high for the transport of a chemical signal in the phloem. The wound response of tomato plants can be inhibited by salicylic acid7 and agents like fusicoccin that affect ion transport8, and wounding by heat9 or physical injury produces electrical activity that has similarities to the epithelial conduction system10 used to transmit a stimulus in the defence responses of some lower animals11. Here we design experiments to distinguish between a phloem-transmissible chemical signal and a physically propagated signal based on electrical activity. We show that translocation in the phloem of tomato seedlings can be completely inhibited without effect on the systemic accumulation of pin transcripts and pin activity, and without hindrance to propagated electrical signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Ryan, C. A. A Rev. Phytopathol. 28, 425–449 (1990).

    CAS  Article  Google Scholar 

  2. 2

    Bowles, D. J. A. Rev. Biochem. 59, 873–907 (1990).

    CAS  Article  Google Scholar 

  3. 3

    Ryan, C. A. & Farmer, E. E. A. Rev. Pl. Physiol. Pl. molec. Biol. 42, 651–674 (1991).

    CAS  Article  Google Scholar 

  4. 4

    Pena-cortes, H., Willmitzer, L. & Sanchez-Serrano, J. Pl. Cell 3, 963–972 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Pearce, G., Strydom, D., Johnson, S. & Ryan, C. A. Science 253, 895–898 (1991).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Farmer, E. E. & Ryan, C. A. Pl. Cell 4, 129–134 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Doherty, H. M., Selvendran, R. A. & Bowles, D. J. Physiol. molec. Pl. Path. 33, 377–384 (1988).

    CAS  Article  Google Scholar 

  8. 8

    Doherty, H. M. & Bowles, D. J. Pl. Cell Envir. 13, 851–855 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Wildon, D. C., Doherty, H. M., Eagles, G. Bowles, D. J. & Thain, J. F. Ann. Bot. 64, 691–695 (1989).

    Article  Google Scholar 

  10. 10

    Mackie, G. O. Am. Zool. 5, 439–453 (1965).

    CAS  Article  Google Scholar 

  11. 11

    Anderson, P. A. V. Prog. Neurobiol. 15, 161–203 (1980).

    CAS  Article  Google Scholar 

  12. 12

    Gasser, H. S. Am. J. Physiol. 97, 254–270 (1931).

    CAS  Google Scholar 

  13. 13

    Blatt, F. J. Biochim. biophys. Acta 339, 382–389 (1974).

    CAS  Article  Google Scholar 

  14. 14

    Lang, A. & Minchin, P. E. H. J. exp. Bot. 37, 389–398 (1986).

    Article  Google Scholar 

  15. 15

    Baker, D. A. & Milburn, J. A. (eds) Transport of Photoassimilates (Longman, Harlow, 1989).

  16. 16

    Pena-Cortes, H., Sanchez-Serrano, J., Rocha-Sosa, M. & Willmitzer, L. Planta 174, 84–89 (1988).

    CAS  Article  Google Scholar 

  17. 17

    Farmer, E. E., Johnson, R. R. & Ryan, C. A. Pl. Physiol. 98, 995–1002 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Nelson, C. E., Walker-Simmons, M., Makus, D., Zuroske, G., Graham, J. & Ryan, C. A. in Mechanisms of Plant Resistance to Insects (ed. Hedin, P.) 103–122 (American Chemical Society, Washington DC, 1983).

    Book  Google Scholar 

  19. 19

    Tyree, M. T. J. theor. Biol. 26, 181–214 (1970).

    CAS  Article  Google Scholar 

  20. 20

    Malone, M. & Stankovic, B. Pl. Cell Envir. 14, 431–436 (1991).

    Article  Google Scholar 

  21. 21

    Malone, M. Planta 187, 505–510 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Robards, A. W. & Lucas, W. J. A. Rev. Pl. Physiol. Pl. molec. Biol. 41, 369–419 (1990).

    Article  Google Scholar 

  23. 23

    Robards. A. W., Lucas, W. J., Pitts, J. D., Jongsma, H. J. & Spray, D. C. (eds) Parallels in Cell to Cell Junctions in Plants and Animals (Springer, Berlin, 1990).

    Google Scholar 

  24. 24

    Pickard, B. Bot. Rev. 39, 172–201 (1973).

    Article  Google Scholar 

  25. 25

    Pickard, B. Naturwissenschaften 61, 60–64 (1974).

    ADS  Article  Google Scholar 

  26. 26

    Davies, E. Pl. Cell Envir. 10, 623–631 (1987).

    Article  Google Scholar 

  27. 27

    Smallwood, M., Gurr, S. J., McPherson, M. J. & Bowles, D. J. Biochem. J. 281, 501–505 (1992).

    CAS  Article  Google Scholar 

  28. 28

    Longmann, J., Schell, J. & Willmitzer, L. Analyt. Biochem. 163, 16–20 (1987).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wildon, D., Thain, J., Minchin, P. et al. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360, 62–65 (1992).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing