Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate

Abstract

THE observed trend of increasing oceanic 87Sr/86Sr ratios during the late Cenozoic led Raymo et al.1 to propose that chemical weathering rates increased at this time as a result of enhanced weatherability of silicate rocks. They suggested that this was due in turn to continential uplift, primarily in the Himalayas and the Andes. Because weathering involves the reaction of silicates with atmospheric carbon dioxide, considerations of changes in weathering rates must take into account the need to balance the global carbon cycle. To maintain this balance on timescales greater than 106yr, enhanced weathering requires an increased flux of CO2, into the atmosphere2. Without such an increased flux, weathering rates could not increase, and one is then forced to search for other explanations for the observed 87Sr/86Sr trend, such as a changing riverine strontium isotope composition3–6. Here I assume that the strontium isotope record does indeed reflect enhanced weathering in the late Cenozoic, but propose that its cause may have been an increased CO2 flux arising from the recycling of pelagic sedimentary carbon at subduction zones. Since the Jurassic, sedimentary carbonate accumulation has shifted from primarily cratonic to primarily pelagic environments7–11; because sea-floor spreading transports pelagic carbonate to, and recycles it through, metamorphic environments in subduction zones, this shift to pelagic carbonate accumulation would provide the increased CO2 flux needed to increase weathering rates12,13

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Raymo, M. E., Ruddiman, W. F. & Froelich, P. N. Geology 16, 649–653 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Sundquist, E. T. Quat. Sci. Rev. 10, 283–296 (1990).

    Article  ADS  Google Scholar 

  3. Hodell, D. A., Mead, G. A. & Mueller, P. A. Chem. Geol. (Isotop. Geosci. Sec.) 80, 291–307 (1990).

    Article  CAS  Google Scholar 

  4. Brass, G. W. Geochim. cosmochim. Acta 40, 721–730 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Kump, L. R. Am. J. Sci. 289, 390–410 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Berner, R. A. & Rye, D. M. Am. J. Sci. 292, 136–148 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Boss, S. K. & Wilkinson, B. H. J. Geol. 99, 497–513 (1991).

    Article  ADS  Google Scholar 

  8. Wilkinson, B. H. & Walker, J. G. C. Am. J. Sci. 289, 525–548 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Southam, J. R. & Hay, W. W. J. geophys. Res. 82, 3825–3842 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Davies, T. A. & Worsley, T. R. Soc. Econ. Paleontol. Miner. Spec. Publ. 32, 169–179 (1981).

    Google Scholar 

  11. Opdyke, B. N. & Wilkinson, B. H. Paleoceanography 3, 685–703 (1988).

    Article  ADS  Google Scholar 

  12. Volk, T. Nature 337, 637–640 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Caldeira, K. Geology 19, 204–206 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Shemesh, A., Mortlock, R. A. & Froelich, P. N. Paleoceanography 4, 221–234 (1989).

    Article  ADS  Google Scholar 

  15. Delaney, M. L. & Boyle, E. A. Paleoceanography 3, 137–156 (1988).

    Article  ADS  Google Scholar 

  16. Berner, R. A., Lasaga, A. C. & Garrels, R. M. Am. J. Sci. 283, 641–683 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Berner, R. A. Am. J. Sci. 291, 339–375 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigio, Palisades, New York, 1982).

    Google Scholar 

  19. Palmer, M. R. & Edmond, J. M. Earth planet Sci. Lett. 92, 11–26 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Staudigel, H., Hart, S. R., Schmincke, H.-U. & Smith, B. M. Geochim. cosmochim. Acta 53, 3091–3094 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Marty, B. & Jambon, A. Earth planet Sci. Lett. 83, 16–26 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Barnes, I., Irwin, W. P. & White, D. E. Water Resources Investigations, Open-File Rep. 78-0039 (U.S. Geological Suryey, Reston, Virginia, 1978).

  23. Barr, T. D. & Dahlen, F. A. J. geophys. Res. 94, 3923–3947 (1989).

    Article  ADS  Google Scholar 

  24. Winkler, H. G. F. Petrogenesis of Metamorphic Rocks, 4th Edn (Springer, New York, 1979).

    Google Scholar 

  25. Bluth, G. J. S. & Kump, L. R. Am. J. Sci. 291, 284–308 (1991).

    Article  ADS  Google Scholar 

  26. Berner, E. K. & Berner, R. A. The Global Water Cycle (Prentice-Hall, Englewood Cliffs, New Jersey, 1987).

    MATH  Google Scholar 

  27. Francois, L. M. & Walker, J. C. G. Am. J. Sci. 292, 81–135 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Burke, W. H. et al. Geology 10, 516–519 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Hess, J., Bender, M. L. & Schilling, J.-G. Science 231, 979–984 (1986).

    Article  ADS  CAS  Google Scholar 

  30. Rea, D. K. & Vallier, T. Geol. Soc. Am. Bull. 94, 1430–1437 (1983).

    Article  ADS  Google Scholar 

  31. Arthur, M. A., Dean, W. E. & Schlanger, S. O. The Carbon Cycle and Atmospheric CO2 Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 504–529 (American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  32. Volk, T. Geology 17, 107–110 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldeira, K. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). https://doi.org/10.1038/357578a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357578a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing