Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palaeozoic cooling modulated by ophiolite weathering through organic carbon preservation

Abstract

Ophiolite obductions in the tropics are coeval with Phanerozoic glaciations. The exposure of mafic and ultramafic rocks is thought to trigger cooling by increasing global weatherability. However, each Palaeozoic icehouse also coincides with a δ13C increase of 3−5‰, interpreted as an increase in organic carbon burial, not weatherability. Here we provide a framework that explains the tectonic forces behind Palaeozoic glaciations through increased organic carbon burial caused by the weathering of mafic and ultramafic lithologies in ophiolites. To evaluate the leverage ophiolite obduction has over organic carbon burial, we couple a mineral weathering model with a carbon box model. We show that the weathering of (ultra)mafic rocks can substantially enhance the preservation of organic carbon through the formation of high-surface-area smectite clays. The heightened organic carbon burial induced by an idealized ophiolite obduction causes ocean δ13C to increase by ~3.7‰. The temporal evolution and magnitude of our modelled δ13C excursion approximates Palaeozoic records. We present an analysis of shale geochemistry, which shows a correlation between ultramafic provenance and total organic carbon. Our results indicate that high-surface-area clays, formed during weathering of (ultra)mafic lithologies, exert a major control over Earth’s long-term carbon cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationships among primary lithology, modelled weathering products, SSA and TOC.
Fig. 2: Model results from an idealized ophiolite obduction.
Fig. 3: Comparison with the Palaeozoic δ13C record.
Fig. 4: Analysis of SGP shale and siltstone geochemistries.

Similar content being viewed by others

Data availability

Compiled SSA and TOC data are available in Supplementary Table 6. Geologic constraints are available in Supplementary Table 7. SGP data were downloaded on 3 October 2022, filtering for the following lithologies: shale, mudstone, siltstone. Iron and phosphorus data were downloaded from EarthChem on 19 March 2022, filtering all igneous rock analyses for which SiO2, FeO, and P2O5 are present. The igneous and sedimentary geochemical data are reproduced within the Supplementary Data and are available at https://doi.org/10.6084/m9.figshare.24433012.

Code availability

MATLAB functions are available for both the weathering model, weatherRock.m, and the carbon box model, carbonPhosphorusModel.m. The functions can be found at https://doi.org/10.6084/m9.figshare.24433012.

References

  1. Owen, T., Cess, R. D. & Ramanathan, V. Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277, 640–642 (1979).

    Article  Google Scholar 

  2. McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse–greenhouse variability. Science 352, 444–447 (2016).

    Article  Google Scholar 

  3. Kump, L. R. et al. A weathering hypothesis for glaciation at high atmospheric \(p_{{\mathrm{CO}}_2}\) during the Late Ordovician. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 173–187 (1999).

    Article  Google Scholar 

  4. Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  Google Scholar 

  5. Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allegre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Article  Google Scholar 

  6. West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).

    Article  Google Scholar 

  7. Jagoutz, O., Macdonald, F. A. & Royden, L. Low-latitude arc–continent collision as a driver for global cooling. Proc. Natl Acad. Sci. USA 113, 4935–4930 (2016).

    Article  Google Scholar 

  8. Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L. & Jagoutz, O. Arc–continent collisions in the tropics set Earth’s climate state. Science 364, 181–184 (2019).

    Article  Google Scholar 

  9. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Article  Google Scholar 

  10. Grossman, E. L. et al. Glaciation, aridification, and carbon sequestration in the Permo–Carboniferous: the isotopic record from low latitudes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 222–233 (2008).

    Article  Google Scholar 

  11. Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  12. Lalonde, K., Mucci, A., Ouellet, A. & Gélinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).

    Article  Google Scholar 

  13. Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).

    Article  Google Scholar 

  14. Kennedy, M. J., Pevear, D. R. & Hill, R. J. Mineral surface control of organic carbon in black shale. Science 295, 657–660 (2002).

    Article  Google Scholar 

  15. Harder, H. The role of magnesium in the formation of smectite minerals. Chem. Geol. 10, 31–39 (1972).

    Article  Google Scholar 

  16. Nahon, D., Colin, F. & Tardy, Y. Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clay Miner. 17, 339–348 (1982).

    Article  Google Scholar 

  17. Brigatti, M. F. & Poppi, L. ‘Corrensite-like minerals’ in the Taro and Ceno valleys, Italy. Clay Miner. 19, 59–66 (1984).

    Article  Google Scholar 

  18. Obeso, de, Carlos, J. & Kelemen, P. B. Major element mobility during serpentinization, oxidation and weathering of mantle peridotite at low temperatures. Phil. Trans. R. Soc. A 378, 20180433 (2020).

    Article  Google Scholar 

  19. Velde, B. B. & Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks (Springer, 2008).

  20. Velbel, M. A. Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: implications for hydrologic control of differences in absolute rates. Chem. Geol. 105, 89–99 (1993).

    Article  Google Scholar 

  21. Blattmann, T. M. et al. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science 366, 742–745 (2019).

    Article  Google Scholar 

  22. Laakso, T. A. & Daniel, P. S. Regulation of atmospheric oxygen during the Proterozoic. Earth Planet. Sci. Lett. 388, 81–91 (2014).

    Article  Google Scholar 

  23. Li, Y., Zhang, T., Ellis, G. S. & Shao, D. Depositional environment and organic matter accumulation of Upper Ordovician–lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 466, 252–264 (2017).

    Article  Google Scholar 

  24. Percival, L. M. E. et al. Phosphorus-cycle disturbances during the Late Devonian anoxic events. Glob. Planet. Change 184, 103070 (2020).

    Article  Google Scholar 

  25. Beil, S. et al. Cretaceous oceanic anoxic events prolonged by phosphorus cycle feedbacks. Climate 16, 757–782 (2020).

    Google Scholar 

  26. Löhr, S. C. & Kennedy, M. J. Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2. Biogeosciences 11, 4971–4983 (2014).

    Article  Google Scholar 

  27. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).

    Article  Google Scholar 

  28. DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008).

    Article  Google Scholar 

  29. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  Google Scholar 

  30. LaPorte, D. F. et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 182–195 (2009).

    Article  Google Scholar 

  31. Buggisch, W. & Michael, M. J. Carbon isotope stratigraphy of the Devonian of central and southern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 68–88 (2006).

    Article  Google Scholar 

  32. Stolfus, B. M. et al. An expanded stratigraphic record of the Devonian–Carboniferous boundary Hangenberg biogeochemical event from southeast Iowa (USA). Bull. Geosci. 95, 469–495 (2020).

  33. Finlay, A. J., Selby, D. & Gröcke, D. R. Tracking the Hirnantian glaciation using Os isotopes. Earth Planet. Sci. Lett. 293, 339–348 (2010).

    Article  Google Scholar 

  34. Percival, L. M. E. et al. Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: evidence from osmium-isotope compositions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 240–249 (2019).

    Article  Google Scholar 

  35. Edmond, J. M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258, 1594–1597 (1992).

    Article  Google Scholar 

  36. Garver, J. I., Royce, P. R. & Smick, T. A. Chromium and nickel in shale of the Taconic foreland; a case study for the provenance of fine-grained sediments with an ultramafic source. J. Sediment. Res. 66, 100–106 (1996).

    Google Scholar 

  37. Hiscott, R. N. Ophiolitic source rocks for Taconic-age flysch: trace-element evidence. Geol. Soc. Am. Bull. 95, 1261–1267 (1984).

    Article  Google Scholar 

  38. Workman, R. K. & Stanley, R. H. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  39. Viers, J., Dupré, B. & Gaillardet, J. Chemical composition of suspended sediments in world rivers: new insights from a new database. Sci. Total Environ. 407, 853–868 (2009).

    Article  Google Scholar 

  40. Farrell, U. C. et al. The sedimentary geochemistry and paleoenvironments project. Geobiology 19, 545–556 (2021).

    Article  Google Scholar 

  41. Broecker, W. S. & Peng, T.-H. Tracers in the Sea Vol. 690 (Lamont-Doherty Geological Observatory, Columbia Univ., 1982).

  42. Bayon, G. et al. Accelerated mafic weathering in Southeast Asia linked to late Neogene cooling. Sci. Adv. 9, eadf3141 (2023).

    Article  Google Scholar 

  43. Rosenthal, Y. et al. Site U1482. In Proceedings of the International Ocean Discovery Program: Western Pacific Warm Pool Vol. 363 (eds Rosenthal, Y. et al.) (IODP, 2018); publications.iodp.org/proceedings/363/363.PDF

  44. Kennedy, M. J. & Wagner, T. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proc. Natl Acad. Sci. USA 108, 9776–9781 (2011).

    Article  Google Scholar 

  45. Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).

    Article  Google Scholar 

  46. Schrag, D. P., Berner, R. A., Hoffman, P. F. & Halverson, G. P. On the initiation of a snowball Earth. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000219 (2002).

  47. Rivero Crespo, M. A., Pereira Gómez, D., Villa García, M. V., Gallardo Amores, J. M. & Vicente, S. E. Characterization of serpentines from different regions by transmission electron microscopy, X-ray diffraction, BET specific surface area and vibrational and electronic spectroscopy. Fibers 7, 47 (2019).

    Article  Google Scholar 

  48. Young, R. Soil Properties and Behaviour Vol. 5 (Elsevier, 2012).

  49. Burton, M. R., Georgina, M. S. & Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013).

    Article  Google Scholar 

  50. Soulet, G. et al. Temperature control on CO2 emissions from the weathering of sedimentary rocks. Nat. Geosci. 14, 665–671 (2021).

    Article  Google Scholar 

  51. Berner, R. A., Lasaga, A. C. & Garrels, R. M. Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

  52. Milliman, J. D. & Farnsworth, K. L. River Discharge to the Coastal Ocean: A Global Synthesis (Cambridge Univ. Press, 2013).

  53. Kent, D. V. & Muttoni, G. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric \(p_{{\mathrm{CO}}_2}\) from weathering of basaltic provinces on continents drifting through the equatorial humid belt. Climate 9, 525–546 (2013).

    Google Scholar 

  54. Syvitski, J. P. M., Charles, J. V., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

    Article  Google Scholar 

  55. Kuehl, S. A., Mead, A. A., Goodbred, S. L. & Kudrass, H. N. The Ganges–Brahmaputra Delta (SEPM, 2005).

  56. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3 (eds Holland, H. D. & Turekian, K. K.) 1–64 (Elsevier, 2003).

  57. Gale, A., Colleen, A. D., Charles, H. L., Su, Y. & Schilling, J. ‐G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

    Article  Google Scholar 

  58. Arrhenius, S. XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Phil. Mag. J. Sci. 41, 237–276 (1896).

    Article  Google Scholar 

  59. Stepanauskas, R. et al. Summer inputs of riverine nutrients to the Baltic Sea: bioavailability and eutrophication relevance. Ecol. Monogr. 72, 579–597 (2002).

    Article  Google Scholar 

  60. Pacini, N. & Gächter, R. Speciation of riverine particulate phosphorus during rain events. Biogeochemistry 47, 87–109 (1999).

    Article  Google Scholar 

  61. Frohlich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R. & DeVries, T. The marine phosphorus cycle. Am. J. Sci. 282, 474–511 (1982).

    Article  Google Scholar 

  62. Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Rothman and F. Macdonald for their insight, particularly in respect to the carbon cycle and its isotopic record. We thank M. Follows for a valuable discussion on dissolved oxygen and remineralization. Funding for this work came from NSF EAR 1925863.

Author information

Authors and Affiliations

Authors

Contributions

J.M. and O.J. conceptualized the research. J.M. led modelling and statistical methods. J.M. and O.J. were responsible for data analysis, writing and editing.

Corresponding author

Correspondence to Joshua Murray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Donald Penman, Thomas Blattmann and Germain Bayon for their contribution to the peer review of this work. Primary Handling Editors: James Super and Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Tables 1–5, Results and Methods.

Supplementary Data 1

Supplementary Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, J., Jagoutz, O. Palaeozoic cooling modulated by ophiolite weathering through organic carbon preservation. Nat. Geosci. 17, 88–93 (2024). https://doi.org/10.1038/s41561-023-01342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01342-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing