Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Improved second-harmonic generation from Langmuir–Blodgett films of hemicyanine dyes

Abstract

THE phenomenon of second-harmonic generation (SHG), whereby a material under illumination generates light at twice the incident frequency, is finding increasing use in optical signal processing. The principal requirement for SHG is a non-centrosymmetric structure; in organic materials, this can be achieved through the use of Langmuir–Blodgett films, which offer control of structure at the molecular level. SHG has been demonstrated in films composed of hemicyanine dyes of the general formula D—C6H4— CH=CH—C5H4N+— RX-, where D is an electron donor, R is usually a hydrophobic alkyl chain and X- is a counterion such as Br- or I-. The frequency-doubling properties of these films are sensitive to the choice of donor group1,2 the extent of molecular aggregation3,4and the type of packing5–7 Mixed films, in which the dye molecules are interspersed with an inert phase, have been used to reduce aggregation and consequently enhance SHG3,8, but these films have the potential disadvantage of phase separation. Here we show that the use of an amphiphilic anion as both counterion and spacer molecule gives rise to an ordered segregation of the hemicyanine chromophores, and greatly enhanced SHG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lupo, D. et al. J. opt. Soc. Am. B5, 300–308 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Bubeck, C. et al. Angew. Chem. Int. Edn Engl. 3, 54–58 (1991).

    CAS  Google Scholar 

  3. Schildkraut, J. S., Penner, T. L., Willand, C. S. & Ulman, A. Opt. Lett. 13, 134–136 (1988)

    Article  ADS  CAS  Google Scholar 

  4. Steinhoff, R., Chi, L. F., Marowsky, G. & Möbius, D. J. opt. Soc. Am. B6, 843–847 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Ashwell, G. J., Dawnay, E. J. C., Kuczynski, A. P. & Martin, P. J. SPIE Int. Soc. opt. Engng 1361, 589–598 (1991).

    ADS  CAS  Google Scholar 

  6. Ashwell, G. J. et al. Mat. Res. Soc. Symp. Proc. 247, 787–792 (1992).

    Article  CAS  Google Scholar 

  7. Anderson, B. L. et al. Thin Solid Films 179, 413–421 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Girling, I. R. et al. J. opt. Soc. Am. B4, 950–955 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Girling, I. R. et al. Thin Solid Films 132, 101–112 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Cross, G. H. et al. Thin Solid Films 156, 39–52 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Young, M. C. et al. Thin Solid Films 182, 319–332 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Kowel, S. T., Hayden, L. M. & Selfridge, R. H. SPIE Int. Soc. opt. Engng 682, 103–108 (1986).

    ADS  Google Scholar 

  13. Hayden, L. M. et al. Thin Solid Films 160, 379–388 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Selfridge, R. H. et al. Thin Solid Films 160, 471–476 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Stroeve, P., Saperstein, D. D. & Rabolt, J. F. Thin Solid Films 179, 529–534 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Stroeve, P., Saperstein, D. D. & Rabolt, J. F. J. Chem. Phys. 92, 6958–6967 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Ancelin, H. et al. Langmuir 6, 172–177 (1990).

    Article  CAS  Google Scholar 

  18. Shirota, K., Kajikawa, K., Takezoe, H. & Fukuda, A. Jap. J. appl. Phys. 29, 750–755 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Kajikawa, K., Shirota, K., Takezoe, H. & Fukuda, A. Jap. J. appl. Phys. 29, 913–917 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Kajikawa, K., Kigata, K., Takezoe, H. & Fukuda, A. Molec. Cryst. liq. Cryst. A182, 91–101 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashwell, G., Hargreaves, R., Baldwin, C. et al. Improved second-harmonic generation from Langmuir–Blodgett films of hemicyanine dyes. Nature 357, 393–395 (1992). https://doi.org/10.1038/357393a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357393a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing