Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upconversion superburst with sub-2 μs lifetime

Abstract

The generation of anti-Stokes emission through lanthanide-doped upconversion nanoparticles is of great importance for technological applications in energy harvesting, bioimaging and optical cryptography1,2,3. However, the weak absorption and long radiative lifetimes of upconversion nanoparticles may significantly limit their use in imaging and labelling applications in which a fast spontaneous emission rate is essential4,5,6. Here, we report the direct observation of upconversion superburst with directional, fast and ultrabright luminescence by coupling gap plasmon modes to nanoparticle emitters. Through precise control over the nanoparticle’s local density of state, we achieve emission amplification by four to five orders of magnitude and a 166-fold rate increase in spontaneous emission. We also demonstrate that tailoring the mode of the plasmonic cavity permits active control over the colour output of upconversion emission. These findings may benefit the future development of rapid nonlinear image scanning nanoscopy and open up the possibility of constructing high-frequency, single-photon emitters driven by telecommunication wavelengths.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Upconversion amplification through plasmonic nanocavity coupling.
Fig. 2: Theoretical investigations and experimental demonstrations of the gap-plasmon accelerated upconversion process.
Fig. 3: Spectral properties and luminescence enhancement of UCNPs coupled to a gap-plasmon nanocavity.
Fig. 4: Spontaneous emission rate measurements of UCNPs.

Similar content being viewed by others

References

  1. Qin, X., Xu, J., Wu, Y. & Liu, X. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: a toolbox for emerging applications. ACS Cent. Sci. 5, 29–42 (2019).

    Article  CAS  Google Scholar 

  2. Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8, 32–36 (2014).

    Article  CAS  Google Scholar 

  3. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    Article  CAS  Google Scholar 

  4. Chen, X. et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 7, 10304 (2016).

    Article  CAS  Google Scholar 

  5. Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    Article  CAS  Google Scholar 

  6. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  CAS  Google Scholar 

  7. Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2016).

    Article  CAS  Google Scholar 

  8. Chen, C. K., De Castro, A. R. B. & Shen, Y. R. Surface-enhanced second-harmonic generation. Phys. Rev. Lett. 46, 145–148 (1981).

    Article  CAS  Google Scholar 

  9. Chen, W. et al. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nat. Commun. 8, 15198 (2017).

    Article  CAS  Google Scholar 

  10. Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nat. Photon. 12, 548–553 (2018).

    Article  CAS  Google Scholar 

  11. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    Article  CAS  Google Scholar 

  12. Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    Article  CAS  Google Scholar 

  13. Renero-Lecuna, C. et al. Origin of the high upconversion green luminescence efficiency in β-NaYF4:2%Er3+,20%Yb3+. Chem. Mater. 23, 3442–3448 (2011).

    Article  CAS  Google Scholar 

  14. Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734 (2013).

    Article  CAS  Google Scholar 

  15. Laporte, O. & Meggers, W. F. Some rules of spectral structure. J. Opt. Soc. Am. 12, 459–463 (1925).

    Article  Google Scholar 

  16. Malta, O. L. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J. Non Cryst. Solids 354, 4770–4776 (2008).

    Article  CAS  Google Scholar 

  17. Park, W., Lu, D. & Ahn, S. Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44, 2940–2962 (2015).

    Article  CAS  Google Scholar 

  18. Das, A., Mao, C., Cho, S., Kim, K. & Park, W. Over 1,000-fold enhancement of upconversion luminescence using water-dispersible metal–insulator–metal nanostructures. Nat. Commun. 9, 4828 (2018).

    Article  Google Scholar 

  19. Zhang, W., Ding, F. & Chou, S. Y. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas. Adv. Mater. 24, OP236–OP241 (2012).

    CAS  Google Scholar 

  20. Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

    Article  CAS  Google Scholar 

  21. Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427–435 (2015).

    Article  CAS  Google Scholar 

  22. Purcell, E., Torrey, H. & Pound, R. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    Article  CAS  Google Scholar 

  23. Song, J. H. et al. Fast and bright spontaneous emission of Er3+ ions in metallic nanocavity. Nat. Commun. 6, 7080 (2015).

    Article  CAS  Google Scholar 

  24. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article  CAS  Google Scholar 

  25. Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012).

    Article  CAS  Google Scholar 

  26. Liang, L. et al. Upconversion amplification through dielectric superlensing modulation. Nat. Commun. 10, 1391 (2019).

    Article  Google Scholar 

  27. Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).

    Article  CAS  Google Scholar 

  28. Zhang, Q. et al. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J. Am. Chem. Soc. 132, 11372–11378 (2010).

    Article  CAS  Google Scholar 

  29. Pollnau, M., Gamelin, D., Lüthi, S., Güdel, H. & Hehlen, M. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337–3346 (2000).

    Article  CAS  Google Scholar 

  30. Suyver, J., Aebischer, A., García-Revilla, S., Gerner, P. & Güdel, H. Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 71, 125123 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Singapore Ministry of Education (MOE2017-T2-2-110), the Agency for Science, Technology and Research (A*STAR; grant no. A1883c0011), the National Research Foundation (NRF), the Prime Minister’s Office, Singapore under its Competitive Research Program (award no. NRF-CRP15-2015-03) and under the NRF Investigatorship Program (award no. NRF-NRFI05-2019-0003), and the National Natural Science Foundation of China (no. 21771135).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and X.L. conceived and designed the experiments. X.L., R.A.L.V., C.-W.Q. and J.K.W.Y. supervised the project and led the collaboration efforts. Y.W. and J.X. synthesized the upconversion nanocrystals and silver nanocubes. Y.W., J.X. and E.T.P. conducted the optical experiments. R.A.L.V., J.X., L.L. and H.L. performed theoretical simulations. Y.W. and X.L. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Renaud A. L. Vallée or Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Oscar Loureiro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and refs. 31–32.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xu, J., Poh, E.T. et al. Upconversion superburst with sub-2 μs lifetime. Nat. Nanotechnol. 14, 1110–1115 (2019). https://doi.org/10.1038/s41565-019-0560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0560-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing