Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rad23 links DNA repair to the ubiquitin/proteasome pathway

Abstract

Rad23 is an evolutionarily conserved protein that is important for nucleotide excision repair1,2,3. A regulatory role has been proposed for Rad23 because rad23 mutants are sensitive to ultraviolet light but are still capable of incising damaged DNA4,5. Here we show that Rad23 interacts with the 26S proteasome through an amino-terminal ubiquitin-like domain (UbLR23). The carboxy terminus of Rad23 binds to the Rad4 DNA repair protein and creates a link between the DNA repair and proteasome pathways. The ultraviolet sensitivity caused by deletion of the UbLR23 domain may therefore arise from its inability to interact with the proteasome. The fusion proteins glutathione S-transferase (GST)–Rad23 and Rad4–haemagglutinin (HA), and the proteasome subunits Cim3 and Cim5, cofractionate through consecutive chromatography steps. The ubiquitin-like domain of human Rad23 (UbLHRB) also interacts with the human proteasome. These results demonstrate that ubiquitin-like domains (UbLs) represent a new class of proteasome-interacting motifs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rad23 interacts with the 26S proteasome.
Figure 2: Protease activity associated with Rad23.
Figure 3: Rad4–HA interacts with Rad23.
Figure 4: A complex of high Mr contains GST–Rad23, Rad4–HA and Cim5.
Figure 5: Rad23–HA is degraded by the proteasome.
Figure 6: Human HHR23-B interacts with Mss1.

Similar content being viewed by others

References

  1. Watkins, J. F., Sung, P., Prakash, L. & Prakash, S. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13, 7757–7765 (1993).

    Article  CAS  Google Scholar 

  2. Masutani, C. et al. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13, 1831–1843 (1994).

    Article  CAS  Google Scholar 

  3. van der Spek, P. J. et al. XPC and human homologs of RAD23: intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res. 24, 2551–2559 (1996).

    Article  CAS  Google Scholar 

  4. Miller, R. D., Prakash, L. & Prakash, S. Defective excision of pyrimidine dimers and interstrand crosslinks in rad7 and rad23 mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 188, 235–239 (1982).

    Article  CAS  Google Scholar 

  5. Guzder, S. M., Bailly, V., Sung, P., Prakash, L. & Prakash, S. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J. Biol. Chem. 270, 8385–8388 (1995).

    Article  CAS  Google Scholar 

  6. Madura, K. & Varshavsky, A. Degradation of Gα by the N-end rule pathway. Science 265, 1454–1458 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Ghislain, M., Udvardy, A. & Mann, C. Saccharomyces cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366, 358–361 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847 (1996).

    Article  CAS  Google Scholar 

  9. Garrett, K. P. et al. Positive regulation of general transcription factor SIII by a tailed ubiquitin homolog. Proc. Natl Acad. Sci. USA 92, 7172–7176 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Guzder, S. N., Habraken, Y., Sung, P., Prakash, L. & Prakash, S. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, Replication Protein A, and transcription factor TFIIH. J. Biol. Chem. 270, 12973–12976 (1995).

    Article  CAS  Google Scholar 

  11. Wang, Z. et al. The RAD7, RAD16 and RAD23 genes of Saccharomyces cerevisiae: Requirements for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol. Cell. Biol. 17, 635–643 (1997).

    Article  CAS  Google Scholar 

  12. Rubin, D. M. et al. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature 370, 655–657 (1996).

    Article  ADS  Google Scholar 

  13. Hicke, L. & Riezman, H. Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84, 277–287 (1996).

    Article  CAS  Google Scholar 

  14. Mu, D., Hsu, D. S. & Sancar, A. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271, 8285–8294 (1996).

    Article  CAS  Google Scholar 

  15. Sugasawa, K. et al. HHR23B, a human Rad23 homolog, stimulates XPC protein in nucleotide excision repair in vitro. Mol. Cell. Biol. 16, 4852–4861 (1996).

    Article  CAS  Google Scholar 

  16. Reardon, J. T., Mu, T. & Sancar, A. Overproduction, purification, and characterization of the XPC subunit of the human DNA repair excision nuclease. J. Biol. Chem. 271, 19451–19456 (1996).

    Article  CAS  Google Scholar 

  17. McCready, S. Repair of 6-4 photoproducts and cyclobutane pyrimidine dimers in rad mutants of Saccharomyces cerevisiae. Mutat. Res. 315, 261–273 (1994).

    Article  CAS  Google Scholar 

  18. Verhage, R. A., Seeman, A.-M., Lombaerts, M., van de Putte, P. & Brouwer, J. Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant. Mutat. Res. 362, 155–165 (1996).

    Article  Google Scholar 

  19. Mueller, J. P. & Smerdon, M. J. Rad23 is required for transcription-coupled repair and efficient overall repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2361–2368 (1996).

    Article  CAS  Google Scholar 

  20. Baniahmad, C., Baniahmad, A. & O'Malley, B. W. Arapid method combining a functional test of fusion proteins in vivo and their purification. BioTechniques 16, 194–196 (1994).

    CAS  PubMed  Google Scholar 

  21. Chen, P., Johnson, P., Sommer, T., Jentsch, S. & Hochstrasser, M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell 74, 357–369 (1993).

    Article  CAS  Google Scholar 

  22. Heinemeyer, W., Kleinschmidt, J. A., Saidowsky, J., Escher, C. & Wolf, D. H. Proteinase YSCE, the yeast proteasome/multicatalytic-multifunctional proteinase-mutants unravel its function in stress-induced proteolysis and uncover its necessity for cell-survival. EMBO. J. 10, 555–562 (1991).

    Article  CAS  Google Scholar 

  23. Merrick, W. C. Assays for eukaryotic protein synthesis. Methods Enzymol. 60, 108–123 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Mann for antisera against Cim3/Sug1 and Cim5, M. Ghislain for cim3-1 and cim5-1 strains; J. Dohmen for the plasmid expressing Pre1-Flag; J. H. Hoeijmakers for cDNA clones expressing HHR23-A and HHR23-B; and D. Reinberg for HeLa cell extracts. This work was supported by a grant from the NIH (K.M.). I.V. was supported by a pre-doctoral fellowship from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Madura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauber, C., Chen, L., Tongaonkar, P. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715–718 (1998). https://doi.org/10.1038/35661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35661

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing