Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from zinc abundances for dust fractionation in chemically peculiar stars

Abstract

A SMALL number of intrinsically luminous, low-mass stars have recently been shown to have an extremely peculiar elemental abundance pattern. Their photospheric carbon, nitrogen, oxygen and sulphur abundances are within an order of magnitude of solar values, but all other normally abundant metals are present in only trace amounts; in two stars, iron is deficient by nearly five orders of magnitude. Two possible explanations are that the low iron content is primordial, implying a very great age, whereas the CNO and S abundances have been acquired during evolution, or that the CNO and S abundances reflect the initial stellar composition and the low iron content is the result of chemical separation by dust formation. The latter hypothesis arises mainly because the abundance pattern of these stars is similar to that of interstellar gas1, in which fractionation to dust plays an important part, but it is not easily understood how a process that must occur in the circumstellar envelope can so strikingly affect the photospheric abundances. Here we report the detection of appreciable amounts of zinc in the star HD52961, and argue that, because zinc will condense into dust only at rather low temperatures, its detection in near normal amounts is convincing evidence for the fractionation hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Venn, K. A. & Lambert, D. L. Astrophys. J. 363, 234–244 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Kodaira, K., Greenstein, J. L. & Oke, J. B. Astrophys. J. 159, 485–512 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Lambert, D. L., Hinkle, K. H. & Luck, R. E. Astrophys. J. 333, 917–924 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Bond, H. E. in Evolution of Stars: The Photospheric Abundance Connection (eds Michaud, G. & Tutukov, A.) 341–346 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  5. Lamers, H. J. G. L. M. et al. Astr. Astrophys. 154, L20–L23 (1986).

    ADS  CAS  Google Scholar 

  6. Waelkens, C. et al. Astr. Astrophys. 251, 495–504 (1991).

    ADS  Google Scholar 

  7. Cohen, M. et al. Astrophys. J. 196, 179–189 (1976).

    Article  ADS  Google Scholar 

  8. Waelkens, C. et al. Astr. Astrophys. 256, L15–L18 (1992).

    ADS  CAS  Google Scholar 

  9. Bond, H. E. & Luck, R. E. Astrophys. J. 312, 203–212 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Tielens, A. G. G. M. in From Miras to Planetary Nebulae: Which Path for Stellar Evolution? (eds Mennessier, M. O. & Omont, A.), 186–200 (Editions Frontières, Paris, 1990).

    Google Scholar 

  11. Harris, A. W. & Mas Hesse, J. M. Mon. Not. R. astr. Soc. 220, 271 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Van Steenberg, M. E. & Shull, J. M. Astrophys. J. 330, 942–963 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Jenkins, E. B. in Interstellar Processes (eds Hollenbach, D. J. & Thronson, H. A. Jr) 533–560 (Astrophysics and Space Science Library, Reidel, Dordrecht, 1987).

    Book  Google Scholar 

  14. Phillips, A. P., Gondhalekar, P. M. & Pettini, M. Mon Not. R. astr. Soc. 200, 687 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Charbonneau, P. Astrophys. J. 372, L33–L36 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Gustafsson, B. in ESO Workshop on Stellar Evolution and Dynamics in the Outer Halo of the Galaxy (eds Azzopardi M & Mateucci, F.) 33–45 (1987).

    Google Scholar 

  17. Magain, P. Astr. Astrophys. 179, 176–180 (1987).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winckel, V., Mathis, J. & Waelkens, C. Evidence from zinc abundances for dust fractionation in chemically peculiar stars. Nature 356, 500–501 (1992). https://doi.org/10.1038/356500a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356500a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing