Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells

Abstract

HEREDITARY ovalocytosis is common in some areas of Melanesia and South East Asia where malaria is endemic. These red cells resist invasion by malarial parasites in vitro1,2 and ovalocytic individuals are less parasitized than normal3. This has been attributed to the greater rigidity of ovalocytic red cells4,5. It has been suggested that South East Asian ovalocytosis results from the heterozygous presence of an altered membrane anion transporter (band 3)6,7. We have used the polymerase chain reaction to clone the abnormal band 3 complementary DNA from an ovalocytic of Indian origin8 and found two changes from the normal protein: a point mutation (Lys56-→Glu) and the deletion of the sequence AFSPQVLAA (residues 400–408), but no evidence for an N-terminal extension7. The deletion is also found in the abnor-mal band 3 of South East Asian ovalocytes9 and seems to be responsible for the unusual properties of the ovalocytic red cell. We show here that the membrane domain of the abnormal ovalocyte band 3 has a substantially altered structure and that the protein is defective in anion transport activity. The changed transport properties of the red cells may have a role in the reduced para-sitaemia of ovalocytic individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kidson, C., Lamont, G., Saul, A. & Nurse, G. T. Proc. natn. Acad. Sci. U.S.A. 78, 5829–5832 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Hadley, T. et al. J. clin. Invest. 71, 780–782 (1983).

    Article  CAS  Google Scholar 

  3. Cattani, J. A., Gibson, F. D., Alpers, M. P. & Crane, G. G. Trans. R. Soc. Trop. Med. Hyg. 81, 705–709 (1987).

    Article  CAS  Google Scholar 

  4. Saul, A., Lamont, G., Sawyer, W. H. & Kidson, C. J. Cell. Biol. 98, 1348–1354 (1984).

    Article  CAS  Google Scholar 

  5. Mohandas, N., Lie-Injo, L. E., Friedman, M. & Mak, J. W. Blood 63, 1385–1392 (1984).

    CAS  PubMed  Google Scholar 

  6. Liu, S. C. et al. New Engl, J. Med. 323, 1530–1538 (1990).

    Article  CAS  Google Scholar 

  7. Jones, G. L., Edmundsen, H. M. Wesche, D. & Saul, A. Biochim. biophys. Acta 1096, 33–40 (1991).

    Article  CAS  Google Scholar 

  8. Schofield, A. E. et al. J. molec. Biol. (in the press).

  9. Tanner, M. J. A., Bruce, L., Martin, P. G., Rearden, D. M. & Jones, G. L. Blood 78, 2785–2786 (1991).

    CAS  PubMed  Google Scholar 

  10. Tanner, M. J. A., Martin, P. G. & High, S. Biochem. J. 256, 703–712 (1988).

    Article  CAS  Google Scholar 

  11. Kopito, R. R. & Lodish, H. F. Nature 316, 234–238 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Cabantchik, Z. I., Kutner, S., Krugliak, M. & Ginsburg, H. Molec. Pharmac. 23, 92–99 (1983).

    CAS  Google Scholar 

  13. Wagner, S., Vogel, R., Lietzke, R., Koob, R. & Drenckhahn, D. Am. J. Physiol. 253, F213–F221 (1987).

    CAS  PubMed  Google Scholar 

  14. Weith, J. O., Anderson, O. S., Brahm, J., Bjerrum, P. J. & Borders, C. L. Phil. Trans. R. Soc. B 299, 383–399 (1982).

    Article  Google Scholar 

  15. Amato, D. & Booth, P. B. Papua New Guinea Med. J. 20, 26–32 (1977).

    CAS  Google Scholar 

  16. Serjeantson, S., Bryson, K., Amato, D. & Babona, D. Hum. Genet 37, 161–167 (1977).

    Article  CAS  Google Scholar 

  17. Laemmli, U. K. Nature 227, 680–681 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Janas, T., Bjerrum, P. J., Brahm, J. & Weith, J. O. Am. J. Physiol. 257, C601–C606 (1989).

    Article  CAS  Google Scholar 

  19. Pimplikar, S. W. & Reithmeier, R. A. F. J. biol. Chem. 261, 9770–9778 (1986).

    CAS  PubMed  Google Scholar 

  20. Shearman, M. S. & Halestrap, A. P. Biochem. J. 223, 673–676 (1984).

    Article  CAS  Google Scholar 

  21. Halestrap, A. P. Biochem. J. 156, 193–207 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schofield, A., Reardon, D. & Tanner, M. Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature 355, 836–838 (1992). https://doi.org/10.1038/355836a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355836a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing