Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the yeast MATα2/MCM1/DNA ternary complex

Abstract

The structure of a complex containing the homeodomain repressor protein MATα2 and the MADS-box transcription factor MCM1 bound to DNA has been determined by X-ray crystallography at 2.25 Å resolution. It reveals the protein–protein interactions responsible for cooperative binding of MATα2 and MCM1 to DNA. The otherwise flexible amino-terminal extension of the MATα2 homeodomain forms a β-hairpin that grips the MCM1 surface through parallel β-strand hydrogen bonds and close-packed, predominantly hydrophobic, side chains. DNA bending induced by MCM1 brings the two proteins closer together, facilitating their interaction. An unusual feature of the complex is that an eight-amino-acid sequence adopts an α-helical conformation in one of two copies of the MATα2 monomer and a β-strand conformation in the other. This ‘chameleon’ sequence of MATα2 may be important for recognizing natural operator sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the α2/MCM1/STE6 DNA complex.
Figure 2: Details of MCM1–DNA interactions and electron density of chameleon sequences.
Figure 3: α2–MCM1 interactions.
Figure 4: Model for the interaction of α2 and MCM1 on 31 bp of STE6 UAS.

Similar content being viewed by others

References

  1. Gehring, W. J. et al. Homeodomain-DNA recognition. Cell 78, 211–223 (1994).

    Article  CAS  Google Scholar 

  2. Wilson, D. S. & Desplan, C. Homeodomain proteins. Cooperating to be different. Curr. Biol. 5, 32–34 (1995).

    Article  CAS  Google Scholar 

  3. Wolberger, C. Homeodomain interactions. Curr. Opin. Struct. Biol. 6, 62–68 (1996).

    Article  CAS  Google Scholar 

  4. Vershon, A. K. Protein interactions of homeodomain proteins. Curr. Opin. Biotechnol. 7, 392–396 (1996).

    Article  CAS  Google Scholar 

  5. Johnson, A. D. Molecular mechanisms of cell-type determination in budding yeast. Curr. Opin. Genet. Dev. 5, 552–558 (1995).

    Article  CAS  Google Scholar 

  6. Sauer, R. T., Smith, D. L. & Johnson, A. D. Flexibility of the yeast alpha 2 repressor enables it to occupy the ends of its operator, leaving the center free. Genes Dev. 2, 807–816 (1988).

    Article  CAS  Google Scholar 

  7. Hall, M. N. & Johnson, A. D. Homeodomain of the yeast repressor alpha 2 is a sequence-specific DNA-binding domain but is not sufficient for repression. Science 237, 1007–1012 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Komachi, K., Redd, M. J. & Johnson, A. D. The WD repeats of Tup1 interact with the homeodomain protein alpha 2. Genes Dev. 8, 2857–2867 (1994).

    Article  CAS  Google Scholar 

  9. Wolberger, C., Vershon, A. K., Liu, B., Johnson, A. D. & Pabo, C. O. Crystal structure of a MAT alpha 2 homeodomain–operator complex suggests a general model for homeodomain–DNA interactions. Cell 67, 517–528 (1991).

    Article  CAS  Google Scholar 

  10. Phillips, C. L., Vershon, A. K., Johnson, A. D. & Dahlquist, F. W. Secondary structure of the homeodomain of yeast alpha 2 repressor determined by NMR spectroscopy. Genes. Dev. 5, 764–772 (1991).

    Article  CAS  Google Scholar 

  11. Mak, A. & Johnson, A. D. The carboxy-terminal tail of the homeodomain protein alpha 2 is required for function with a second homeodomain protein. Genes Dev. 7, 1862–1870 (1993).

    Article  CAS  Google Scholar 

  12. Li, T., Stark, M. R., Johnson, A. D. & Wolberger, C. Crystal structure of the MATa1/MAT alpha 2 homeodomain heterodimer bound to DNA. Science 270, 262–269 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Lydall, D., Ammerer, G. & Nasmyth, K. Anew role for MCM1 in yeast: cell cycle regulation of SW15 transcription. Genes Dev. 5, 2405–2519 (1991).

    Article  CAS  Google Scholar 

  14. Passmore, S., Maine, G. T., Elble, R., Christ, C. & Tye, B. K. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J. Mol. Biol. 204, 593–606 (1988).

    Article  CAS  Google Scholar 

  15. Kuo, M. H., Nadeau, E. T. & Grayhack, E. J. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations. Mol. Cell. Biol. 17, 819–832 (1997).

    Article  CAS  Google Scholar 

  16. Althoefer, H., Schleiffer, A., Wassmann, K., Nordheim, A. & Ammerer, G. Mcm1 is required to coordinate G2-specific transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 5917–5928 (1995).

    Article  CAS  Google Scholar 

  17. Maher, M., Cong, F., Kindelberger, D., Nasmyth, K. & Dalton, S. Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary complex factor. Mol. Cell. Biol. 15, 3129–3137 (1995).

    Article  CAS  Google Scholar 

  18. Christ, C. & Tye, B. K. Functional domains of the yeast transcription/replication factor MCM1. Genes Dev. 5, 751–763 (1991).

    Article  CAS  Google Scholar 

  19. Primig, M., Winkler, H. & Ammerer, G. The DNA binding and oligomerization domain of MCM1 is sufficient for its interaction with other regulatory proteins. EMBO J. 10, 4209–4218 (1991).

    Article  CAS  Google Scholar 

  20. Shore, P. & Sharrocks, A. D. The MADS-box family of transcription factors. Eur. J. Biochem. 229, 1–13 (1995).

    Article  CAS  Google Scholar 

  21. Pellegrini, L., Tan, S. & Richmond, T. J. Structure of serum response factor core bound to DNA. Nature 376, 490–498 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Smith, D. L. & Johnson, A. D. Amolecular mechanism for combinatorial control in yeast: MCM1 protein sets the spacing and orientation of the homeodomains of an alpha 2 dimer. Cell 68, 133–142 (1992).

    Article  CAS  Google Scholar 

  23. Vershon, A. K. & Johnson, A. D. Ashort, disordered protein region mediates interactions between the homeodomain of the yeast alpha 2 protein and the MCM1 protein. Cell 72, 105–112 (1993).

    Article  CAS  Google Scholar 

  24. Keleher, C. A., Goutte, C. & Johnson, A. D. The yeast cell-type specific repressor alpha 2 acts cooperatively with a non-cell-type-specific protein. Cell 53, 927–936 (1988).

    Article  CAS  Google Scholar 

  25. Keleher, C. A., Passmore, S. & Johnson, A. D. Yeast repressor alpha 2 binds to its operator cooperatively with yeast protein Mcm1. Mol. Cell. Biol. 9, 5228–5230 (1989).

    Article  CAS  Google Scholar 

  26. Mead, J., Zhong, H., Acton, T. B. & Vershon, A. K. The yeast alpha2 and Mcm1 proteins interact through a region similar to a motif found in homeodomain proteins of higher eukaryotes. Mol. Cell. Biol. 16, 2135–2143 (1996).

    Article  CAS  Google Scholar 

  27. Minor, D. L. J & Kim, P. S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Wynne, J. & Treisman, R. SRF and MCM1 have related but distinct DNA binding specificities. Nucleic Acids Res. 20, 3297–3303 (1992).

    Article  CAS  Google Scholar 

  29. Acton, T. B., Zhong, H. & Vershon, A. K. DNA-binding specificity of Mcm1: operator mutations that alter DNA-bending and transcriptional activities by a MADS box protein. Mol. Cell. Biol. 17, 1881–1889 (1997).

    Article  CAS  Google Scholar 

  30. Zhong, H. L. & Vershon, A. K. The yeast homeodomain protein Mat alpha 2 shows extended DNA binding specificity in complex with Mcm1. J. Biol. Chem. 272, 8402–8409 (1997).

    Article  CAS  Google Scholar 

  31. Labeots, L. A. & Weiss, M. A. Electrostatics and hydration at the homeodomain DNA interface: chemical probes of an interfacial water cavity. J. Mol. Biol. 269, 113–128 (1997).

    Article  CAS  Google Scholar 

  32. Bruhn, L. & Sprague, G. F. J MCM1 point mutants deficient in expression of alpha-specific genes: residues important for interaction with alpha 1. Mol. Cell. Biol. 14, 2534–2544 (1994).

    Article  CAS  Google Scholar 

  33. Abel, K., Yoder, M. D., Hilgenfeld, R. & Jurnak, F. An alpha to beta conformational switch in EF-Tu. Structure 4, 1153–1159 (1996).

    Article  CAS  Google Scholar 

  34. Polekhina, G. et al. Helix unwinding in the effector region of elongation factor EF-Tu–GDP. Structure 4, 1141–1151 (1996).

    Article  CAS  Google Scholar 

  35. Wright, H. T. The structural puzzle of how serpin serine proteinase inhibitors work. BioEssays 18, 453–464 (1996).

    Article  CAS  Google Scholar 

  36. Perutz, M. F. Amyloid fibrils. Mutations make enzyme polymerize. Nature 385, 773–775 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  38. Brünger, A. X-PLOR v3.1 Manual(Yale Univ. Press, New Haven, CT, (1992)).

    Google Scholar 

  39. Tronrud, D. E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr. A 48, 912–916 (1992).

    Article  Google Scholar 

  40. Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. The MIDAS display system. J. Mol. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  41. Lavery, R. & Sklenar, H. The definition of generalised helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynam. 6, 63–91 (1988).

    Article  CAS  Google Scholar 

  42. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Hunziker, L. Pellegrini and D. Sargent for their support and assistance, and A. Thompson at BM14 of the ESRF Grenoble for help during data collection. This research was supported in part by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S., Richmond, T. Crystal structure of the yeast MATα2/MCM1/DNA ternary complex. Nature 391, 660–666 (1998). https://doi.org/10.1038/35563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35563

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing