Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

Abstract

SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geoffroy, J. The Oklo Phenomenon, 133–149 (IAEA, Vienna, 1975).

    Google Scholar 

  2. Alpern, B. Natural Fission Reactors, 333–351 (IAEA, Vienna, 1978).

    Google Scholar 

  3. Leventhal, J. S., Nagy, B. & Gauthier-Lafaye, F. US Geol. Surv. Open-File Rep. 89–668, 1–18 (1989).

  4. Cortial, F., Gauthier-Lafaye, F., Lacrampe-Couloume, G., Oberlin, A. & Weber, F. Org. Geochem. 15, 73–85 (1990).

    Article  CAS  Google Scholar 

  5. Choppin, G. R. & Rydberg, J. Nuclear Chemistry: Theory and Applications, 235 (Pergamon, Oxford, 1980).

    Google Scholar 

  6. Naudet, R. Oklo: des Réacteurs Nucléaires Fossiles, 695 (ed. le Commisariat à I'Energie Atomique, Paris, 1991).

    Google Scholar 

  7. Gauthier-Lafaye, F., Weber, F. & Ohmoto, H. Econ. Geol. 84, 2286–2295 (1989).

    Article  CAS  Google Scholar 

  8. Gauthier-Lafaye, F. & Weber, F. Econ. Geol. 84, 2267–2285 (1989).

    Article  CAS  Google Scholar 

  9. Holliger, P. & Devillers, C. Earth planet. Sci. Lett. 52, 76–84 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Bros, R., Gauthier-Lafaye, F., Stille, P. & Clauer, N. Symp. Metalliferous Black Shales and Related Ore Deposits, IGCP Proj. 254, Abstr. 1 (1990).

  11. Bostick, N. H., Aspects of Diagenesis Soc. Econ. Palaeont. Mineral. Spec. Publ. 25 (eds Sholle, P. & Schluger, P. R.) 17–43 (1979).

    Book  Google Scholar 

  12. Nagy, B. & Mossman, D. J. Early Organic Evolution: Implications for Mineral and Energy Resources (ed. Schidlowski, M.) 224–231 (Springer, Heidelberg, in the press).

  13. Lewan, M. D., Winters, J. C. & McDonald, J. H. Science 203, 897–899 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Nagy, B., Leventhal, J. S. & Gauthier-Lafaye, F. US Geol. Surv. Circ. 1058, 65–67 (1991).

  15. Leventhal, J. S. & Hofstra, A. H. US Geol. Surv. Circ. 1035, 42 (1988).

  16. Choppin, G. R. Radiochim. Acta 44/45, 23–28 (1988).

    Article  Google Scholar 

  17. Nagy, B., Thurman, E. M., Long, A. & Hare, P. E. GSA Abstr. with Programs, A173 (GSA, Boulder, 1988).

    Google Scholar 

  18. Loss, R. D. et al. Chem. Geol. 76, 71–84 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Curtis, D. et al. Appl. Geochem. 4, 49–62 (1989).

    Article  CAS  Google Scholar 

  20. Loss, R. D. et al. Earth planet. Sci. Lett. 89, 193–206 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Neuilly, M., Dozol, J. F. & Naudet, R. Natural Fission Reactors, 433–440 (IAEA, Vienna, 1978).

    Google Scholar 

  22. Ludwig, K. R., Nash, J. T. & Naeser, C. W. Econ. Geol. 76, 89–110 (1981).

    Article  CAS  Google Scholar 

  23. Holliger, P., Pagel, M. & Pironon, J. Chem. Geol. 80, 45–53 (1989).

    CAS  Google Scholar 

  24. Bonhomme, M., Gauthier-Lafaye, F. & Weber, F. Precambrian Res. 18, 87–102 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Holliger, P. C. R. Acad. Sci. Paris 307, II, 367–373 (1988).

    Google Scholar 

  26. Ruffenach, J. C., Menes, J., Devillers, C., Lucas, M. & Hagemann, R. Earth planet. Sci. Lett. 30, 94–104 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Ludwig, K. R., Earth planet. Sci. Lett. 46, 212–220 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Loss, R. thesis, Univ. of Western Australia (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, B., Gauthier-Lafaye, F., Holliger, P. et al. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors. Nature 354, 472–475 (1991). https://doi.org/10.1038/354472a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/354472a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing