Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Design of potent selective zinc-mediated serine protease inhibitors

Abstract

Many serine proteases are targets for therapeutic intervention because they often play key roles in disease1. Small molecule inhibitors of serine proteases with high affinity are especially interesting as they could be used as scaffolds from which to develop drugs selective for protease targets. One such inhibitor is bis(5-amidino-2-benzimidazolyl)methane (BABIM), standing out as the best inhibitor of trypsin (by a factor of over 100) in a series of over 60 relatively closely related analogues2,3,4. By probing the structural basis of inhibition, we discovered, using crystallographic methods, a new mode of high-affinity binding in which a Zn2+ ion is tetrahedrally coordinated between two chelating nitrogens of BABIM and two active site residues, His 57 and Ser 195. Zn2+, at subphysiological levels, enhances inhibition by over 103-fold. The distinct Zn2+ coordination geometry implies a strong dependence of affinity on substituents. This unique structural paradigm has enabled development of potent, highly selective, Zn2+-dependent inhibitors of several therapeutically important serine proteases, using a physiologically ubiquitous metal ion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Superposition of trypsin-BABIM-Zn2+ onto keto-BABIM-Zn2+.
Figure 3

Similar content being viewed by others

References

  1. Stroud, R. M. Afamily of protein-cutting proteins. Sci. Am. 231, 74–88 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Tidwell, R. R. & Geratz, J. D. Diarylamidine derivatives with one or both of the aryl moieties consisting of an indole or indole-like ring. Inhibitors of arginine-specific esteroproteinases. J. Med. Chem. 21, 613–623 (1978).

    Article  CAS  Google Scholar 

  3. Jennette, J. C., Tidwell, R. R., Geratz, J. D., Bing, D. H. & Falk, R. J. Amelioration of immune complex-mediated glomerulonephritis by synthetic protease inhibitors. Am. J. Pathol. 127, 499–506 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Caughey, G. H., Raymond, W. W., Bacci, E., Lombardy, R. J. & Tidwell, R. R. Bis(5-amidino-2-benzimidazolyl)methane and related amidines are potent, reversible inhibitors of mast cell tryptases. J. Pharmacol. Exp. Ther. 264, 676–682 (1993).

    CAS  PubMed  Google Scholar 

  5. Lipscomb, W. N. & Sträter, N. Recent advances in zinc enzymology. Chem. Rev. 96, 2375–2433 (1996).

    Article  CAS  Google Scholar 

  6. Christianson, D. W. Structural biology of zinc. Adv. Protein Chem. 42, 281–355 (1991).

    Article  CAS  Google Scholar 

  7. Kimura, E., Shiota, T., Koike, T., Shiro, M. & Kodama, M. Azinc(II) complex of 1,5,9-triazacylcododecane ([12]aneN3) as a model for carbonic anhydrase. J. Am. Chem. Soc. 112, 5805–5811 (1990).

    Article  CAS  Google Scholar 

  8. Groves, J. T. & Olson, J. R. Models of zinc-containing proteases. Rapid amide hydrolysis by an unusually acidic Zn+2-OH2complex. Inorg. Chem. 24, 2715–2717 (1985).

    Article  CAS  Google Scholar 

  9. Vedani, A. & Huhta, D. Anew force field for modeling metalloproteins. J. Am. Chem. Soc. 112, 4759–4767 (1990).

    Article  CAS  Google Scholar 

  10. Krieger, M., Kay, L. M. & Stroud, R. M. The structure and specific binding of trypsin: A comparison of inhibited derivatives and a model for substrate binding. J. Mol. Biol. 83, 209–230 (1974).

    Article  CAS  Google Scholar 

  11. Katz, B. A., Finer-Moore, J. S., Mortezaei, R., Rich, D. H. & Stroud, R. M. Novel Ki nanomolar inhibitors of serine proteases by binding or epitaxial chemistry on an enzyme surface. Biochemistry 34, 8264–8280 (1995).

    Article  CAS  Google Scholar 

  12. Ippolito, J. A., Alexander, R. S. & Christianson, D. W. Hydrogen bond stereochemistry in protein structure and function. J. Mol. Biol. 215, 457–471 (1990).

    Article  CAS  Google Scholar 

  13. Perona, J. J. & Craik, C. S. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360 (1995).

    Article  CAS  Google Scholar 

  14. Tidwell, R. R., Geratz, J. D., Clyde, W. A., Rosenthal, K. U. & Dubovi, E. J. Suppression of respiratory syncytial virus infection in cotton rats by bis(5-amidino-2-benzimidazolyl)methane. Antimicrob. Agents Chemother. 26, 591–593 (1984).

    Article  CAS  Google Scholar 

  15. Lenter, C. (ed.) Geigy Scientific Tables Vol. 3 Physical Chemistry Composition of Blood Hematology Somatometric Data 87 (Ciba-Geigy, Basle, Switzerland, 1984).

    Google Scholar 

  16. Hambridge, K. M., Casey, C. E. & Krebs, N. F. in Trace Elements in Human and Animal Nutrition 5th edn vol. 2(ed. Mertz, W.) 15 (Academic, Orlando, Florida, 1996).

    Google Scholar 

  17. Lippard, S. J. in Bioinorganic Chemistry (eds Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S.) 505–583 (University Science, Mill Valley, CA, 1994).

    Google Scholar 

  18. Berners-Price, S. J. & Sadler, P. J. Coordination chemistry of metallodrugs: insights into biological speciation from NMR spectroscopy. Coord. Chem. Rev. 151, 1–40 (1996).

    Article  CAS  Google Scholar 

  19. Tong, L. et al. Anew serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383, 272–275 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Matthews, D. J. & Wells, J. A. Engineering an interfacial zinc site to increase hormone-receptor affinity. Chem. Biol. 1, 25–30 (1994).

    Article  CAS  Google Scholar 

  21. Somers, W., Ultsch, M., De Vos, A. M. & Kossiakoff, A. A. The X-ray structure of a growth hormone-prolactin receptor complex. Nature 372, 478–481 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Brinen, L. S., Willett, W. S., Craik, C. S. & Fletterick, R. J. X-ray structures of a designed binding site in trypsin show metal-dependent geometry. Biochemistry 35, 5999–6009 (1996).

    Article  CAS  Google Scholar 

  23. Tidwell, R. R., Geratz, J. D. & Dubovi, E. J. Aromatic amidines: comparison of their ability to block respiratory syncytial virus induced fusion and to inhibit plasmin, urokinase, thrombin, and trypsin. J. Med. Chem. 26, 294–298 (1983).

    Article  CAS  Google Scholar 

  24. McGrath, M. E. et al. Production of crystallizable human chymase from a Bacillus subtilis system. FEBS Lett. 413, 486–488 (1997).

    Article  CAS  Google Scholar 

  25. Tanaka, R. D., Clark, J. M., Warne, R. L., Abraham, W. M. & Moore, W. R. Mast cell tryptase: a new target for therapeutic intervention in asthma. Int. Arch. Allergy Immunol. 107, 408–409 (1995).

    Article  CAS  Google Scholar 

  26. Kuzmic, P. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal. Biochem. 237, 260–273 (1996).

    Article  CAS  Google Scholar 

  27. Katz, B. A. & Cass, R. T. In crystals of complexes of streptavidin with peptide ligands containing the HPQ sequence the pKaof the peptide histidine is less than 3.0. J. Biol. Chem. 272, 13220–13228 (1997).

    Article  CAS  Google Scholar 

  28. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  29. Brünger, A. T. in X-PLOR Manual, version 3.1: A System for X-ray Crystallography and NMR 187–206 (Yale University, New Haven, CT, 1990).

    Google Scholar 

  30. Brünger, A. T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Spear for synthesis of BABIM, T. Church and M. Linsell for synthesis of Arris compounds, L. Cregar, D. Putnam and R. Warne for enzyme assays, and M. Venuti for review and discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley A. Katz.

Additional information

Brookhaven Databank accession codes are given in Table 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, B., Clark, J., Finer-Moore, J. et al. Design of potent selective zinc-mediated serine protease inhibitors. Nature 391, 608–612 (1998). https://doi.org/10.1038/35422

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35422

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing