Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The conduction pore of a cardiac potassium channel

Abstract

Ion channels form transmembrane water-filled pores that allow ions to cross membranes in a rapid and selective fashion. The amino acid residues that line these pores have been sought to reveal the mechanisms of ion conduction and selectivity1,2,3,4,5,6,7. The pore (P) loop8 is a stretch of residues that influences single-channel-current amplitude, selectivity among ions and open-channel blockade2,3,5 and is conserved in potassium-channel subunits previously recognized to contribute to pore formation5,9. To date, potassium-channel pores have been shown to form by symmetrical alignment of four P loops around a central conduction pathway10,11,12. Here we show that the selectivity-determining pore region of the voltage-gated potassium channel of human heart through which the IKs current passes includes the transmembrane segment of the non-P-loop protein minK. Two adjacent residues in this segment of minK are exposed in the pore on either side of a short barrier that restricts the movement of sodium, cadmium and zinc ions across the membrane. Thus, potassium-selective pores are not restricted to P loops or a strict P-loop geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blockade of channels formed with rat minK by Cd2+.
Figure 2: Blockade by Cd2+ of channels formed with KvLQT1 alone or with human minK and KvLQT1.
Figure 3: Inhibition of G56C rat minK channels by external Cd2+ shows the hallmarks of pore blockade.
Figure 4: Inhibition of F57C rat minK channels by internal Zn2+ shows the hallmarks of pore blockade.

Similar content being viewed by others

References

  1. MacKinnon, R. & Miller, C. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science 245, 1382–1385 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. Mutations affecting internal TEA blockade identify the probably pore-forming region of a K+ channel. Science 251, 939–942 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Hartmann, H. A. et al. Exchange of conduction pathways between two related K+ channels. Science 251, 942–944 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Goldstein, S. A., Pheasant, D. J. & Miller, C. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition. Neuron 12, 1377–1388 (1994).

    Article  CAS  Google Scholar 

  5. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  Google Scholar 

  6. Lu, Q. & Miller, C. Silver as a probe of pore-forming residues in a potassium channel. Science 268, 304–307 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Ranganathan, R., Lewis, J. H. & MacKinnon, R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron 16, 131–139 (1996).

    Article  CAS  Google Scholar 

  8. MacKinnon, R. Pore loops: an emerging theme in ion channel structure. Neuron 14, 889–892 (1995).

    Article  CAS  Google Scholar 

  9. Goldstein, S. A. N., Wang, K. W., Ilan, N. & Pausch, M. Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J. Mol. Med. 76, 13–20 (1998).

    Article  CAS  Google Scholar 

  10. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232–235 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Shen, K. Z. et al. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pflugers Arch. 426, 440–445 (1994).

    Article  CAS  Google Scholar 

  12. Glowatzki, E. et al. Subunit-dependent assembly of inward-rectifier K+ channels. Proc. R. Soc. Lond. B 261, 251–261 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Sanguinetti, M. C. 7 Jurkiewicz, N. K. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J. Gen. Physiol. 96, 195–215 (1990).

    Article  CAS  Google Scholar 

  14. Sanguinetti, M. C. et al. Coassembly of K(V)Lqt1 and Mink (Isk) proteins to form cardiac I-Ks potassium channel. Nature 384, 80–83 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Barhanin, J. et al. K(V)LQT1 and 1sK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384, 78–80 (1996).

    Article  ADS  CAS  Google Scholar 

  16. McDonald, T. V. et al. AminK–HERG complex regulates the cardiac potassium current I Kr. Nature 388, 289–292 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Goldstein, S. A. & Miller, C. Site-specific mutations in a minimal voltage-dependent K+ channel alter ion selectivity and open-channel block. Neuron 7, 403–408 (1991).

    Article  CAS  Google Scholar 

  18. Attali, B. et al. The protein IsK is a dual activator of K+ and Cl channels. Nature 365, 850–852 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Wang, K. W. & Goldstein, S. A. N. Subunit composition of minK potassium channels. Neuron 14, 1303–1309 (1995).

    Article  CAS  Google Scholar 

  20. Wang, K.-W., Tai, K.-K. & Goldstein, S. A. N. MinK residues line a potassium channel pore. Neuron 16, 571–577 (1996).

    Article  CAS  Google Scholar 

  21. Tai, K.-K., Wang, K.-W. & Goldstein, S. A. N. MinK potassium channels are heteromultimeric complexes. J. Biol. Chem. 272, 1654–1658 (1997).

    Article  CAS  Google Scholar 

  22. Romey, G. et al. Molecular mechanism and functional significance of the minK control of the KvLQT1 channel activity. J. Biol. Chem. 272, 16713–16716 (1997).

    Article  CAS  Google Scholar 

  23. Yellen, G., Sodickson, D., Chen, T. Y. & Jurman, M. E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075 (1994).

    Article  CAS  Google Scholar 

  24. Blumenthal, E. M. & Kaczmarek, L. K. The minK potassium channel exists in functional and nonfunctional forms when expressed in the plasma membrane of Xenopus oocytes. J. Neurosci. 14, 3097–3105 (1994).

    Article  CAS  Google Scholar 

  25. Armstrong, C. M. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J. Gen. Physiol. 54, 553–575 (1969).

    Article  CAS  Google Scholar 

  26. Latorre, R. & Miller, C. Conduction and selectivity in potassium channels. J. Membr. Biol. 71, 11–30 (1983).

    Article  CAS  Google Scholar 

  27. Yang, N., George, A. L. J & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996).

    Article  Google Scholar 

  28. Goldstein, S. A. N. Astructural vignette common to voltage sensors and conduction pores: canaliculi. Neuron 16, 717–722 (1996).

    Article  CAS  Google Scholar 

  29. Pascual, J. M., Shieh, C. C., Kirsch, G. E. & Brown, A. M. K+ pore structure revealed by reporter cysteines at inner and outer surfaces. Neuron 14, 1055–1063 (1995).

    Article  CAS  Google Scholar 

  30. Dwyer, T. M., Adams, D. J. & Hille, B. The permeabiity of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Abbott, B. Fakler, P. Ruppersberg and K. W. Wang for helpful discussions. The work was supported by a grant from the NIH-NIGMS to S.A.N.G. We also thank the late Dorothy W. Goldstein, to whom this paper is dedicated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve A. N. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, KK., Goldstein, S. The conduction pore of a cardiac potassium channel. Nature 391, 605–608 (1998). https://doi.org/10.1038/35416

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35416

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing