Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coalignment of vimentin intermediate filaments with microtubules depends on kinesin

Abstract

INTERMEDIATE filaments in most types of cultured cells coalign with microtubules. Depolymerization of microtubules results in collapse of vimentin and desmin intermediate filaments to the nucleus where they form a perinuclear cap (reviewed in ref. 1). Collapse can also be induced by microinjection of antibodies against intermediate filament or microtubule proteins2–7. Thus, two filament systems interact with each other. But the molecules mediating this interaction are unknown. One of the candidates for this role is a microtubule motor kinesin8. Recent data showed that kinesin is involved in the plus end-directed movement of the membranous organelles along microtubules such as radial extension of lysosomes in macrophages9 and centrifugal movement of pigment in melanophores10. Here we report that injection of the anti-kinesin antibody into human fibroblasts results in the redistribution of intermediate filaments to a tight perinuclear aggregate but had no effect on the distribution of microtubules. Thus, kinesin is involved not only in organelle movement but also in interaction of the two major cytoskeletal systems, intermediate filaments and microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klymkowsky, M. W., Bachant, J. B. & Domingo, A. Cell Motil. Cytoskel. 14, 309–331 (1989).

    Article  CAS  Google Scholar 

  2. Lin, J. J. C. & Feramisco, J. R. Cell 24, 185–193 (1981).

    Article  CAS  Google Scholar 

  3. Gawlitta, W., Osborn, M. & Weber, K. Eur. J. Cell Biol. 26, 83–90 (1981).

    CAS  PubMed  Google Scholar 

  4. Klymkowsky, M. W. Nature 291, 249–251 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Tölle, H. G., Weber, K. & Osborn, M. Expl Cell Res. 162, 462–474, (1986).

    Article  Google Scholar 

  6. Blose, S. H., Meltzer, D. I. & Feramisco, J. R. J. Cell Biol. 98, 847–859 (1984).

    Article  CAS  Google Scholar 

  7. Wehland, J. & Willingham, M. C. J. Cell Biol. 97, 1476–1490 (1983).

    Article  CAS  Google Scholar 

  8. Vale, R. D. A. Rev. Cell Biol. 3, 347–387 (1987).

    Article  CAS  Google Scholar 

  9. Hollenbeck, P. J. & Swanson, J. A. Nature 346, 864–866 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Rodonov, V. I., Gyoeva, F. K. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 88, 4956–4960 (1991).

    Article  ADS  Google Scholar 

  11. Hollenbeck, P. J. J. Cell Biol. 108, 2335–2342 (1989).

    Article  CAS  Google Scholar 

  12. Stacey, D. W., Allfrey, V. G. & Hanafusa, H. Proc. natn. Acad. Sci. U.S.A. 74, 1514–1618 (1977).

    Article  Google Scholar 

  13. Hollenbeck, P. J., Bershadsky, A. D., Pletjushkina, O. Y., Tint, I. S. & Vasiliev, J. M. J. Cell Sci. 92, 621–631 (1989).

    CAS  PubMed  Google Scholar 

  14. Vale, R. D. & Hotani, H. J. Cell Biol. 107, 2233–2241 (1988).

    Article  CAS  Google Scholar 

  15. Dabora, S. L. & Sheetz, M. P. Cell 54, 27–35 (1988).

    Article  CAS  Google Scholar 

  16. Perides, G., Harter, C. & Traub, P. J. biol. Chem. 262, 13742–13749 (1987).

    CAS  PubMed  Google Scholar 

  17. Traub, P., Perides, G., Kühn, S. & Scherbarth, A. Eur. J. Cell Biol. 43, 55–64 (1987).

    CAS  PubMed  Google Scholar 

  18. Franke, W. W., Hergt, M. & Grund, C. Cell 49, 131–141 (1987).

    Article  CAS  Google Scholar 

  19. Katsumoto, T., Mitsushima, A. & Kurimura, T. Biol Cell. 68, 139–146 (1990).

    Article  CAS  Google Scholar 

  20. Troyanovsky, S. M. et al. Immunologiya (USSR) 6, 70–73 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyoeva, F., Gelfand, V. Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature 353, 445–448 (1991). https://doi.org/10.1038/353445a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353445a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing