Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A stellar origin for the short-lived nuclides in the early Solar System

Abstract

Primitive meteorites contain isotopes that are the decay products of short-lived nuclides in the early Solar System1,2. The relative abundances of these isotopes provide a means to determine timescales for the formation and accretion of primitive Solar System objects, the abundances of the parent nuclides being fixed when these objects solidified. The abundances can also be used to investigate the source of the nuclides (such as 41Ca, 26Al, 60Fe, 53Mn and 107Pd), although this is an area of controversy. The nuclides could have originated from a single stellar object2,3,4,5,6, such as a nearby red-giant or a supernova. But observations of enhanced ion fluxes in a molecular cloud7 have led to other models8,9,10 in which these nuclides are formed by energetic particle irradiation of gas and dust in the protosolar molecular cloud; alternatively, irradiation by energetic particles from the active early Sun may have occurred within the solar nebula itself11,12,13,14,15,16,17,18. Here we show that there is a correlation between the initial abundances of 41Ca and 26Al in samples of primitive meteorite (as inferred from their respective decay products, 41K and 26Mg), implying a common origin for the short-lived nuclides. We can therefore rule out the mechanisms based onenergetic particle irradiation, as they cannot produce simultaneously the inferred initial abundances of both nuclides. If, as our results suggest, a single stellar source is responsible for generating these nuclides, we can constrain to less than one million years the timescale for the collapse of the protosolar cloud to form the Sun.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnesium and potassium isotopic compositions in hibonites from three primitive meteorites.

Similar content being viewed by others

References

  1. Waserburg, G. J. in Protostars and Planets II (eds Black, D. C. & Matthews, M. S.) 703–737 (Univ. Arizona Press, Tucson, 1985).

    Google Scholar 

  2. Cameron, A. G. W. in Protostars and Planets III (eds Levy, E. H. et al.) 47–73 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  3. Wasserburg, G. J., Busso, M., Gallino, R. & Raiteri, C. M. Asymptotic Giant Branch Stars as a source of short-lived radioactive nuclei in the solar nebula. Astrophys. J. 424, 412–428 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Wasserburg, G. J., Gallino, R., Busso, M., Goswami, J. N. & Raiteri, C. M. Injection of freshly synthesized 41Ca in the early solar nebula by an asymptotic giant branch star. Astrophys. J. Lett. 440, L101–L104 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Cameron, A. G. W., Höflich, P., Myers, P. C. & Clayton, D. D. Massive supernova, Orion gamma rays and the formation of the solar system. Astrophys. J. Lett. 447, L53–L57 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Arnould, M., Paulus, G. & Meynet, G. Short-lived radionuclide production by non-exploding Wolf–Rayet stars. Astron. Astrophys 321, 452–465 (1997).

    ADS  CAS  Google Scholar 

  7. Bloemen, H. et al. COMPTEL observations of the Orion complex: Evidence for cosmic-ray induced gamma ray lines. Astron. Astrophys. 281, L5–L8 (1994).

    ADS  CAS  Google Scholar 

  8. Clayton, D. D. Production of 26Al and other extinct radionuclides by low-energy heavy cosmic rays in molecular clouds. Nature 368, 222–224 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Clayton, D. D. & Jin, L. Gamma rays, cosmic rays, and extinct radioactivity in molecular cloud. Astrophys. J. 451, 681–699 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Ramaty, R., Kozlovsky, B. & Lingenfelter, R. E. Light isotopes, extinct radioisotopes and gamma ray lines from low energy cosmic ray interactions. Astrophys. J. 456, 525–540 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Heymann, D. & Dziczkaniec, M. Early irradiation of matter in the solar system: Magnesium (proton, neutron) scheme. Science 191, 79–81 (1976).

    Article  ADS  CAS  Google Scholar 

  12. Clayton, D. D., Dwek, E. & Woosley, S. E. Isotopic anomalies and proton irradiation in the early solar system. Astrophys. J. 214, 300–315 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Heymann, D., Dziczkaniec, M., Walker, A., Huss, G. & Morgan, J. A. Effects of proton irradiation on a gas phase in which condensation take place. I. negative 26Mg anomalies and 26Al. Astrophys. J. 225, 1030–1044 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Lee, T. Alocal proton irradiation model for isotopic anomalies in the solar system. Astrophys. J. 219, 217–226 (1978).

    Article  ADS  Google Scholar 

  15. Wasserburg, G. J. & Arnould, M. in Lecture Notes in Physics 287, 4th Workshop on Nuclear Astrophysics (eds Hillebrandt, W. et al.) 262–276 (Springer, Heidelberg, 1987).

    Google Scholar 

  16. Clayton, D. D. & Jin, L. Anew interpretation of 26Al in meteoritic inclusions. Astrophys. J. Lett. 451, L87–L91 (1995).

    ADS  CAS  Google Scholar 

  17. Shu, F. H., Shang, H. & Lee, T. Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Shu, F. H., Shang, H., Glassgold, E. & Lee, T. X-rays and fluctuating X-wind from protostars. Science 277, 1475–1479 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Srinivasan, G., Sahijpal, S., Ulyanov, A. A. & Goswami, J. N. Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early solar system. Geochim. Cosmochim. Acta 60, 1823–1835 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Goswami, J. N., Srinivasan, G. & Ulyanov, A. A. Ion microprobe studies of Efremovka CAIs: I. Magnesium isotope composition. Geochim. Cosmochim. Acta 58, 431–447 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Fahey, A. J., Goswami, J. N., McKeegan, K. D. & Zinner, E. K. 26Al, 244Pu, 50Ti, REE, and trace element abundances in hibonite grains from CM and CV meteorites. Geochim. Cosmochim. Acta 51, 329–350 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Cantanzaro, E. J., Murphy, T. J., Garner, E. L. & Shields, W. R. Absolute isotopic abundance ratios and atomic weights of magnesium. J. Res. NBS 70a, 453–458 (1966).

    Article  Google Scholar 

  23. MacPherson, G. J., Davis, A. M. & Zinner, E. K. The distribution of aluminum-26 in the early solar system — A reappraisal. Meteoritics 30, 365–386 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Garner, E. L., Murphy, T. J., Gramlich, J. W., Paulsen, P. J. & Barnes, I. L. Absolute isotopic abundance ratios and the atomic weight of a reference sample of potassium. J. Res. NBS 79a, 713–725 (1975).

    Article  CAS  Google Scholar 

  25. Srinivasan, G., Ulyanov, A. A. & Goswami, J. N. 41Ca in the early solar system. Astrophys. J. Lett. 431, L67–L70 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Allen, J. M., Grossman, L., Lee, T. & Wasserburg, G. J. Mineralogy and petrography of HAL, an isotopically-unusual Allende inclusion. Geochim. Cosmochim. Acta 44, 685–699 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Goswami, J. N., Marhas, K. K. & Sahijpal, S. Production of short-lived nuclides by solar energetic particles in the early solar system (Abstr.). Lunar Planet. Sci. XXVIII, 439–440 (1997).

    ADS  Google Scholar 

  28. Arnould, M., Meynet, G. & Paulus, G. in Astrophysical Implications of the Laboratory Study of Presolar Materials (eds Bernatowicz, T. & Zinner, E.) 179–202 (AIP Press, New York, 1997).

    Book  Google Scholar 

  29. Boss, A. P. & Foster, P. N. in Astrophysical Implications of the Laboratory Study of Presolar Materials (eds Bernatowicz, T. & Zinner, E.) 649–664 (AIP Press, New York, 1997).

    Book  Google Scholar 

  30. Cameron, A. G. W., Vanhala, H. & Hölflich, P. in Astrophysical Implications of the Laboratory Study of Presolar Materials (eds Bernatowicz, T. & Zinner, E.) 665–696 (AIP Press, New York, 1997).

    Book  Google Scholar 

  31. Cameron, A. G. W. The first ten million years in the solar nebula. Meteoritics 30, 133–161 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to G. J. Wasserburg, G. J. MacPherson and A. A. Ulyanov for providing the samples of Allende and Efremovka CAIs for our study. We also thank E. J. Olsen of the Field Museum of Natural History for specimens of Murchison and Allende from which SH-7, BB-4, HAL and the seven hand-picked grains were extracted. We appreciate comments received from A. G. W. Cameron and E. Zinner. We acknowledge support from the Department of Space, Government of India (S.S. and J.N.G.) and from the National Aeronautics and Space Administration (A.M.D., L.G. and R.S.L.). J.N.G. also acknowledges hospitality provided by the Lunar and Planetary Institute, Houston, during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Goswami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahijpal, S., Goswami, J., Davis, A. et al. A stellar origin for the short-lived nuclides in the early Solar System. Nature 391, 559–561 (1998). https://doi.org/10.1038/35325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35325

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing