Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A Solar System formation analogue in the Ophiuchus star-forming complex

Abstract

Anomalies among the daughter nuclei of the extinct short-lived radionuclides in calcium–aluminium-rich inclusions indicate that the Solar System must have been born near a source of the short-lived radionuclides so that they could be incorporated before they decayed away1. γ-rays from one such living short-lived radionuclide, 26Al, are detected in only a few nearby star-forming regions. Here we employ multiwavelength observations to demonstrate that one such region, Ophiuchus, containing many prestellar cores that may serve as analogues for the emerging Solar System2, is inundated with 26Al from the neighbouring Upper Scorpius association3, and so may provide concrete guidance for how short-lived radionuclide enrichment proceeded in the Solar System, complementary to the meteoritics. We demonstrate via Bayesian forward modelling drawing on a wide range of observational and theoretical results that this 26Al probably (1) arises from supernova explosions, (2) arises from multiple stars, (3) has enriched the gas before the formation of the cores and (4) gives rise to a broad distribution of core enrichment spanning about two orders of magnitude. This means that if the spread in calcium–aluminium-rich inclusion ages is small, as it is in the Solar System, protoplanetary disks must suffer a global heating event.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A multiwavelength view of Oph inundated by 26Al.
Fig. 2: Schematic of the steps involved from 26Al production to incorporation into CAI grains.
Fig. 3: Origin of 26Al in Upper Sco.
Fig. 4: Enrichment of cores.

Data availability

Observational data underlying Fig. 1 and Extended Data Fig. 1 will be made available upon reasonable request from J.A., with the γ-ray data subject to approval by R. Diehl. Posterior samples and weights obtained in our inference problem are available as a pickle file at https://github.com/jcforbes/ophiuchus-al26.

Code availability

Code to create the plots and generate posterior samples is available at https://github.com/jcforbes/ophiuchus-al26.

References

  1. Lee, T., Papanastassiou, D. A. & Wasserburg, G. J. Demonstration of Mg-26 excess in Allende and evidence for Al-26. Geophys. Res. Lett. 3, 41–44 (1976).

    Article  ADS  Google Scholar 

  2. Shu, F. H., Adams, F. C. & Lizano, S. Star formation in molecular clouds: observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987).

    Article  ADS  Google Scholar 

  3. Diehl, R. et al. Radioactive 26Al from the Scorpius–Centaurus association. Astron. Astrophys. 522, A51 (2010).

    Article  Google Scholar 

  4. Plüschke, S. et al. The COMPTEL 1.809 MeV survey. Preprint at https://arxiv.org/abs/astro-ph/0104047 (2001).

  5. Wilking, B. A., Gagné, M. & Allen, L. E. Star formation in the ρ Ophiuchi Molecular Cloud. Preprint at https://arxiv.org/abs/0811.0005 (2008).

  6. Krause, M. G. H. et al. Surround and squash: the impact of superbubbles on the interstellar medium in Scorpius–Centaurus OB2. Astron. Astrophys. 619, A120 (2018).

    Article  Google Scholar 

  7. Loren, R. B. The cobwebs of Ophiuchus. I—Strands of (C-13)O—the mass distribution. Astrophys. J. 338, 902–924 (1989).

    Article  ADS  Google Scholar 

  8. Zucker, C. et al. A large catalog of accurate distances to local molecular clouds: the Gaia DR2 edition. Astrophys. J. 879, 125 (2019).

    Article  ADS  Google Scholar 

  9. Hester, J. J. et al. Hubble Space Telescope WFPC2 imaging of M16: photoevaporation and emerging young stellar objects. Astron. J. 111, 2349 (1996).

    Article  ADS  Google Scholar 

  10. Gounelle, M. & Meibom, A. The origin of short-lived radionuclides and the astrophysical environment of Solar System formation. Astrophys. J. 680, 781–792 (2008).

    Article  ADS  Google Scholar 

  11. Mellema, G., Arthur, S. J., Henney, W. J., Iliev, I. T. & Shapiro, P. R. Dynamical H ii region evolution in turbulent molecular clouds. Astrophys. J. 647, 397–403 (2006).

    Article  ADS  Google Scholar 

  12. Gaidos, E., Krot, A. N., Williams, J. P. & Raymond, S. N. 26Al and the formation of the Solar System from a molecular cloud contaminated by Wolf–Rayet winds. Astrophys. J. 696, 1854 (2009).

    Article  ADS  Google Scholar 

  13. Gritschneder, M., Lin, D. N. C., Murray, S. D., Yin, Q.-Z. & Gong, M.-N. The supernova triggered formation and enrichment of our solar system. Astrophys. J. 745, 22 (2012).

    Article  ADS  Google Scholar 

  14. Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M. & Janka, H.-T. Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 38 (2016).

    Article  ADS  Google Scholar 

  15. Dwarkadas, V. V., Dauphas, N., Meyer, B., Boyajian, P. & Bojazi, M. Triggered star formation inside the shell of a Wolf–Rayet bubble as the origin of the Solar System. Astrophys. J. 851, 147 (2017).

    Article  ADS  Google Scholar 

  16. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

    Article  ADS  Google Scholar 

  17. Enoch, M. L. et al. The mass distribution and lifetime of prestellar cores in Perseus, Serpens, and Ophiuchus. Astrophys. J. 684, 1240–1259 (2008).

    Article  ADS  Google Scholar 

  18. Kuffmeier, M., Frostholm Mogensen, T., Haugbølle, T., Bizzarro, M. & Nordlund, Å. Tracking the distribution of 26Al and 60Fe during the early phases of star and disk evolution. Astrophys. J. 826, 22 (2016).

    Article  ADS  Google Scholar 

  19. Armillotta, L., Krumholz, M. R. & Fujimoto, Y. Mixing of metals during star cluster formation: statistics and implications for chemical tagging. Mon. Not. R. Astron. Soc. 481, 5000–5013 (2018).

    Article  ADS  Google Scholar 

  20. Reiter, M. Observational constraints on the likelihood of 26Al in planet-forming environments. Astron. Astrophys. 644, L1 (2020).

    Article  ADS  Google Scholar 

  21. Boss, A. P., Keiser, S. A., Ipatov, S. I., Myhill, E. A. & Vanhala, H. A. T. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. I. Varied shock speeds. Astrophys. J. 708, 1268–1280 (2010).

    Article  ADS  Google Scholar 

  22. Young, E. D. Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet. Sci. Lett. 392, 16–27 (2014).

    Article  ADS  Google Scholar 

  23. Vasileiadis, A., Nordlund, Å & Bizzarro, M. Abundance of 26Al and 60Fe in evolving giant molecular clouds. Astrophys. J. Lett. 769, L8 (2013).

    Article  ADS  Google Scholar 

  24. Fujimoto, Y., Krumholz, M. R. & Tachibana, S. Short-lived radioisotopes in meteorites from Galactic-scale correlated star formation. Mon. Not. R. Astron. Soc. 480, 4025 (2018).

    Article  ADS  Google Scholar 

  25. Jacobsen, B. et al. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353–364 (2008).

    Article  ADS  Google Scholar 

  26. Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    Article  ADS  Google Scholar 

  27. Grossman, J. N., Alexander, C. M. O., Wang, J. & Brearley, A. J. Zoned chondrules in Semarkona: evidence for high- and low-temperature processing. Meteorit. Planet. Sci. 37, 49–73 (2002).

    Article  ADS  Google Scholar 

  28. Grossman, L., Ebel, D. S. & Simon, S. B. Formation of refractory inclusions by evaporation of condensate precursors. Geochim. Cosmochim. Acta 66, 145–161 (2002).

    Article  ADS  Google Scholar 

  29. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  ADS  Google Scholar 

  30. Hartmann, L. & Kenyon, S. J. The FU Orionis phenomenon. Annu. Rev. Astron. Astrophys. 34, 207–240 (1996).

    Article  ADS  Google Scholar 

  31. Portegies Zwart, S., Pelupessy, I., van Elteren, A., Wijnen, T. P. G. & Lugaro, M. The consequences of a nearby supernova on the early solar system. Astron. Astrophys. 616, A85 (2018).

    Article  Google Scholar 

  32. Portegies Zwart, S. The formation of solar-system analogs in young star clusters. Astron. Astrophys. 622, A69 (2019).

    Article  ADS  Google Scholar 

  33. Bate, M. R., Lodato, G. & Pringle, J. E. Chaotic star formation and the alignment of stellar rotation with disc and planetary orbital axes. Mon. Not. R. Astron. Soc. 401, 1505–1513 (2010).

    Article  ADS  Google Scholar 

  34. Hacar, A., Tafalla, M., Kauffmann, J. & Kovcs, A. Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region. Astron. Astrophys. 554, A55 (2013).

    Article  ADS  Google Scholar 

  35. MacPherson, G. J., Simon, S. B., Davis, A. M., Grossman, L. & Krot, A. N. Calcium–aluminum-rich inclusions: major unanswered questions. ASP Conf. Ser. 341, 225 (2005).

    ADS  Google Scholar 

  36. Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium–aluminum-rich inclusions. Science 297, 1678–1683 (2002).

    Article  ADS  Google Scholar 

  37. McKeegan, K. D. & Davis, A. M. in Treatise on Geochemistry Vol. 1 (ed. Davis, A. M.) 431–460 (Elsevier, 2003).

  38. Cameron, A. G. W. & Truran, J. W. The supernova trigger for formation of the solar system. Icarus 30, 447 (1977).

    Article  ADS  Google Scholar 

  39. Limongi, M. & Chieffi, A. The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 M: the hydrostatic and explosive contributions. Astrophys. J. 647, 483–500 (2006).

    Article  ADS  Google Scholar 

  40. Wang, W. et al. SPI observations of the diffuse 60Fe emission in the Galaxy. Astron. Astrophys. 469, 1005–1012 (2007).

    Article  ADS  Google Scholar 

  41. Lichtenberg, T. et al. A water budget dichotomy of rocky protoplanets from 26Al-heating. Nat. Astron. 3, 307–313 (2019).

    Article  ADS  Google Scholar 

  42. Loren, R. B. The cobwebs of Ophiuchus. II—(C-13)O filament kinematics. Astropys. J. 338, 925–944 (1989).

    Article  ADS  Google Scholar 

  43. de Geus, E. J., de Zeeuw, P. T. & Lub, J. Physical parameters of stars in the Scorpio–Centaurus OB association. Astron. Astrophys. 216, 44–61 (1989).

    ADS  Google Scholar 

  44. de Geus, E. J. & Burton, W. B. Gas and dust in the Ophiuchus region. Astron. Astrophys. 246, 559–569 (1991).

    ADS  Google Scholar 

  45. de Geus, E. J. Interactions of stars and interstellar matter in Scorpio Centaurus. Astron. Astrophys. 262, 258–270 (1992).

    ADS  Google Scholar 

  46. Pecaut, M. J. & Mamajek, E. E. The star formation history and accretion-disc fraction among the K-type members of the Scorpius–Centaurus OB association. Mon. Not. R. Astron. Soc. 461, 794–815 (2016).

    Article  ADS  Google Scholar 

  47. Luhman, K. L. & Esplin, T. L. Refining the census of the Upper Scorpius association with Gaia. Astron. J. 160, 44 (2020).

    Article  ADS  Google Scholar 

  48. Sullivan, K. & Kraus, A. Undetected binary stars cause an observed mass dependent age gradient in Upper Scorpius. Astron. J. 912, 137 (2021).

    Article  Google Scholar 

  49. Abergel, A. et al. Planck 2013 results. XI. All-sky model of thermal dust emission. Astron. Astrophys. 571, A11 (2014).

    Article  Google Scholar 

  50. Lombardi, M., Bouy, H., Alves, J. & Lada, C. J. Herschel–Planck dust optical-depth and column-density maps. I. Method description and results for Orion. Astron. Astrophys. 566, A45 (2014).

    Article  ADS  Google Scholar 

  51. Friesen, R. K. et al. The Green Bank Ammonia Survey: first results of NH3 mapping of the Gould Belt. Astrophys. J. 843, 63 (2017).

    Article  ADS  Google Scholar 

  52. Ridge, N. A. et al. The COMPLETE survey of star-forming regions: phase I data. Astron. J. 131, 2921 (2006).

    Article  ADS  Google Scholar 

  53. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    Article  ADS  Google Scholar 

  54. Preibisch, T., Brown, A. G. A., Bridges, T., Guenther, E. & Zinnecker, H. Exploring the full stellar population of the Upper Scorpius OB association. Astron. J. 124, 404–416 (2002).

    Article  ADS  Google Scholar 

  55. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. 101, 181 (1995).

    Article  ADS  Google Scholar 

  56. Rauscher, T., Heger, A., Hoffman, R. D. & Woosley, S. E. Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002).

    Article  ADS  Google Scholar 

  57. Woosley, S. E. & Heger, A. Nucleosynthesis and remnants in massive stars of solar metallicity. Phys. Rep. 442, 269–283 (2007).

    Article  ADS  Google Scholar 

  58. Heger, A. & Woosley, S. E. Nucleosynthesis and evolution of massive metal-free stars. Astrophys. J. 724, 341–373 (2010).

    Article  ADS  Google Scholar 

  59. Nomoto, K. & Hashimoto, M. Presupernova evolution of massive stars. Phys. Rep. 163, 13–36 (1988).

    Article  ADS  Google Scholar 

  60. Saio, H., Nomoto, K. & Kato, M. Nitrogen and helium enhancement in the progenitor of supernova 1987A. Nature 334, 508–510 (1988).

    Article  ADS  Google Scholar 

  61. Shigeyama, T. & Nomoto, K. Theoretical light curve of SN 1987A and mixing of hydrogen and nickel in the ejecta. Astrophys. J. 360, 242–256 (1990).

    Article  ADS  Google Scholar 

  62. Sukhbold, T. & Woosley, S. E. The compactness of presupernova stellar cores. Astrophys. J. 783, 10 (2014).

    Article  ADS  Google Scholar 

  63. Langer, N., Braun, H. & Fliegner, J. The production of circumstellar 26Al by massive stars. Astrophys. Space Sci. 224, 275–278 (1995).

    Article  ADS  Google Scholar 

  64. Palacios, A. et al. New estimates of the contribution of Wolf–Rayet stellar winds to the galactic 26Al. Astron. Astrophys. 429, 613–624 (2005).

    Article  ADS  Google Scholar 

  65. Ekstrm, S. et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M at solar metallicity (Z = 0.014). Astron. Astrophys. 537, A146 (2012).

    Article  Google Scholar 

  66. Voss, R. et al. Using population synthesis of massive stars to study the interstellar medium near OB associations. Astron. Astrophys. 504, 531–542 (2009).

    Article  ADS  Google Scholar 

  67. Gounelle, M. & Meynet, G. Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron. Astrophys. 545, A4 (2012).

    Article  ADS  Google Scholar 

  68. Young, E. D. Bayes theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the Solar System. Astrophys. J. 826, 129 (2016).

    Article  ADS  Google Scholar 

  69. Tang, H. & Dauphas, N. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359, 248–263 (2012).

    Article  ADS  Google Scholar 

  70. Young, E. D. The birth environment of the Solar System constrained by the relative abundances of the solar radionuclides. In Proc. International Astronomical Union, Volume 14, Symposium S345: Origins: From the Protosun to the First Steps of Life (ed. Elmebreen, B. G. et al.) 70–77 (Cambridge Univ. Press, 2020).

  71. Wang, W. et al. Gamma-ray emission of 60Fe and 26Al radioactivity in our galaxy. Astrophys. J. 889, 169 (2020).

    Article  ADS  Google Scholar 

  72. Villeneuve, J., Chaussidon, M. & Libourel, G. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Science 325, 985 (2009).

    Article  ADS  Google Scholar 

  73. Arnould, M., Paulus, G. & Meynet, G. Short-lived radionuclide production by non-exploding Wolf–Rayet stars. Astron. Astrophys. 321, 452 (1997).

    ADS  Google Scholar 

  74. Tatischeff, V., Duprat, J. & de Srville, N. A runaway Wolf–Rayet star as the origin of 26Al in the early Solar System. Astrophys. J. Lett. 714, L26–L30 (2010).

    Article  ADS  Google Scholar 

  75. Huss, G. R., Meyer, B. S., Srinivasan, G., Goswami, J. N. & Sahijpal, S. Stellar sources of the short-lived radionuclides in the early Solar System. Geochim. Cosmochim. Acta 73, 4922 (2009).

    Article  ADS  Google Scholar 

  76. Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010).

    Article  ADS  Google Scholar 

  77. Ouellette, N., Desch, S. J. & Hester, J. J. Injection of supernova dust in nearby protoplanetary disks. Astrophys. J. 711, 597 (2010).

    Article  ADS  Google Scholar 

  78. Jura, M., Xu, S. & Young, E. D. 26Al in the early Solar System: not so unusual after all. Astrophys. J. Lett. 775, L41 (2013).

    Article  ADS  Google Scholar 

  79. Breitschwerdt, D. et al. The locations of recent supernovae near the Sun from modelling 60Fe transport. Nature 532, 73–76 (2016).

    Article  ADS  Google Scholar 

  80. Kryukova, E. et al. Luminosity functions of Spitzer-identified protostars in nine nearby molecular clouds. Astron. J. 144, 31 (2012).

    Article  ADS  Google Scholar 

  81. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  82. Boss, A. P. Triggering collapse of the presolar dense cloud core and injecting short-lived radioisotopes with a shock wave. V. Nonisothermal collapse regime. Astrophys. J. 844, 113 (2017).

    Article  ADS  Google Scholar 

  83. Li, S., Frank, A. & Blackman, E. G. Triggered star formation and its consequences. Mon. Not. R. Astron. Soc. 444, 2884–2892 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.A. acknowledges support from the University of Vienna and the Radcliffe Institute. J.C.F. acknowledges funding from an ITC Fellowship and a Flatiron Research Fellowship. D.N.C.L. thanks the Institute for Theory and Computation, Harvard University, for support while this work was initiated. We thank S. Woosley, R. Diehl, S. Portegies Zwart, D. Foreman-Mackey, C. Zucker and F. Bartolić for useful conversations and R. Diehl for providing the COMPTEL γ-ray map.

Author information

Authors and Affiliations

Authors

Contributions

J.A. provided the observational data used in this Letter and produced Fig. 1 and Extended Data Fig. 1. J.C.F. led the forward modelling, and produced the other figures. D.N.C.L. initiated the collaboration and led the integrated approach. All authors contributed to interpretation of the results and preparation of the manuscript.

Corresponding author

Correspondence to John C. Forbes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Martin Krause and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Examples of cores and young stellar objects in L1688.

The images are color composites from the VISIONS ESO public survey, where blue, green and red are mapped to the NIR bands J (1.2 μm), H (1.6 μm), and Ks (2.2 μm) respectively. In all panels the scale bar assumes a distance of 140 pc from the Sun.

Extended Data Fig. 2 The supernova prior.

The supernova prior, based on supernova explosion and yield calculations14. In the upper panel we show, as points near one or zero respectively, which models exploded or did not under different explosion mechanisms. We then fit a probability of explosion as a function of mass to these results (red and blue lines). The light grey lines show interpolation between (and extrapolation slightly beyond) these two scenarios, each of which represents our prior on whether a supernova of a given mass will actually explode conditioned on ζ. The bottom panel shows the 26Al and 60Fe yields from these same calculations. We adopt the linear interpolation shown in the Figure of the N20 yields (the blue line) as the yields given an explosion has occurred. Between 8 and 12 M we assume all stars explode and use the Z9.6 yields.

Extended Data Fig. 3 The Wolf–Rayet Prior.

Following previous work15 we show the total lifetime production of 26Al from various yield calculations as a function of a star’s mass from Langer63, Palacios64, Limongi & Chieffi39, and Ekström65. These are powerlaw fits to the actual simulation results. We then characterize these powerlaws by two numbers: the yield at 20 M and the yield at 120 M, which we call respecitvely A20 and A120. Each study’s result is plotted as a point in the lower panel. To assign a joint prior to the yields at these two masses, we fit a 2D gaussian to these points, essentially taking this collection of models to be a reasonable characterization of the possible values of A20 and A120.

Extended Data Fig. 4 The number of sources responsible for 90% of the living 26Al in Upper-Sco.

The opacity shows the marginal probability of each age, and at a given age, the fraction of the graph covered by each shaded region indicates the probability of that scenario. For all plausible values of the age of Upper-Sco, the living 26Al is likely to come from just a small handful of individual massive stars, but likely more than one.

Extended Data Fig. 5 Individual realizations of the mass of 26Al over time.

The present-day observed value3 is shown as a point with errorbars representing the standard error on the mean on the right side of the plot. Each line is a different posterior realization of Upper-Sco, with transparency proportional to its weight. The colors show different scenarios. Blue lines have their 26Al today dominated by Wolf–Rayet stars, and red lines are dominated by Supernovae. The characteristic sawtooth pattern of the lines comes about as individual sources of 26Al produce the radioactive isotope in a relatively short period of time (or instantaneously for supernovae), followed by exponential decay, as expected for young star-forming regions22.

Extended Data Fig. 6 The mass of living 26Al as a function of time since the birth of Upper-Sco.

The blue shaded region shows the contribution from Wolf Rayet winds, and the red shaded region shows the contribution from supernovae. The thick lines show the median, and the regions show the central 68% of the posterior contribution from each source at that time. Upper-Sco itself is at an age where the dominant contribution is shifting from Wolf Rayet winds to supernovae. The two conspire to generate a roughly constant quantity of living 26Al as a function of age in an average sense, though individual realizations of the cluster oscillate substantially as individual sources produce their 26Al, which then decays away until the next 26Al-producing event (see Extended Data Fig. 5).

Extended Data Fig. 7 The distance distribution between L1688 and massive stars in Upper Sco.

The data for 21 stars are shown in blue and red (the 3D distances and their on-sky component at the fiducial distance of L1688, respectively). In light blue and light red, we show the maximum a posteriori estimate for a single-component 3D gaussian model taking into account distance uncertainties on the individual massive stars.

Extended Data Fig. 8 Evolution of 60Fe compared to 26Al.

The shaded area shows the central 68% of the posterior distribution at that time (that is this distribution is a prediction for Upper Sco in particular). 60Fe peaks later than 26Al both because of its longer half-life and the lack of an early contribution from Wolf–Rayet winds.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, J.C., Alves, J. & Lin, D.N.C. A Solar System formation analogue in the Ophiuchus star-forming complex. Nat Astron 5, 1009–1016 (2021). https://doi.org/10.1038/s41550-021-01442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01442-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing