Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fast rise times and the physical mechanism of deep earthquakes

Abstract

EARTHQUAKES at depths of > 300 km are similar to shallower events in that they are dominantly of double-couple character1, implying that shearing motion has taken place at depth. But because increased friction at these high pressures inhibits brittle fracture2,3, various other mechanisms, related to phase transformations, have been invoked to explain the occurrence of deep earthquakes4–10. As yet, however, no consistent differences have been found between the source characteristics of deep (>300 km) and intermediate-depth (<300km) earthquakes2,11–13. Here we report a systematic global survey of the rise times and stress drops of deep and intermediate earthquakes. (The rise time is defined as the time from rupture initiation to peak moment release rate.) When the rise times are scaled to the seismic moment release of the events, their average is nearly twice as fast for events deeper than 450 km as for shallower events. This difference may ultimately provide an experimental means of testing proposed mechanisms for the generation of deep seismicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kawakatsu, H. Nature 351, 50–53 (1991).

    Article  ADS  Google Scholar 

  2. Frohlich, C. Ann. Rev. Earth planet. Sci. 17, 227–254 (1989).

    Article  ADS  Google Scholar 

  3. Griggs, D. T. & Handin, H. Mem. geol. Soc. Am. 79, 347–373 (1960).

    CAS  Google Scholar 

  4. Green, H. W. & Burnley, P. C. Nature 341, 733–737 (1989).

    Article  ADS  Google Scholar 

  5. Burnley, P. C., Green, H. W. & Prior, D. J. J. geophys. Res. 96, 425–553 (1991).

    Article  ADS  Google Scholar 

  6. Kirby, S. H. J. geophys. Res. 92, 13789–13800 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Sung, C. M. & Burns, R. G. Tectonophysics 31, 1–32 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Liu, L.-G. Phys. Earth planet. Inter. 32, 226–240 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Meade, C. & Jeanloz, R. Science 252, 68–72 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Kirby, S. H., Durham, W. B. & Stern, L. A. Science 252, 216–225 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Kuge, K. & Kawakatsu, H. Geophys. Res. Lett. 17, 227–230 (1990).

    Article  ADS  Google Scholar 

  12. Abe, K. J. Phys. Earth 30, 321–330 (1982).

    Article  ADS  Google Scholar 

  13. Wyss, M. & Molnar, P. Phys. Earth planet. Inter. 6, 279–292 (1972).

    Article  ADS  Google Scholar 

  14. Bridgman, P. W. Am. J. Sci. A243, 90–97 (1945).

    Google Scholar 

  15. Green, H. W., Young, T. E., Walker, D. & Scholz, C. Nature 348, 720–722 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Kanamori, H. & Anderson, D. L. Bull. seism. Soc. Am. 65, 1073–1095 (1975).

    Google Scholar 

  17. Dziewonski, A. M. & Woodhouse, J. H. J. geophys. Res. 88, 3247–3271 (1983).

    Article  ADS  Google Scholar 

  18. Fukao, Y. & Kikuchi, M. Tectonophysics 144, 249–269 (1987).

    Article  ADS  Google Scholar 

  19. Vidale, J. E. Geophys. Res. Lett. 14, 542–545 (1987).

    Article  ADS  Google Scholar 

  20. Houston, H. Geophys. Res. Lett. 17, 1021–1024 (1990).

    Article  ADS  Google Scholar 

  21. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  22. Rubie, D. C. & Brearley, A. J. Nature 348, 628–631 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Akaogi, M., Ito, E. & Navrotsky, A. J. geophys. Res. 94, 15671–15686 (1989).

    Article  ADS  Google Scholar 

  24. Poirier, J. P. in Anelasticity of the Earth, Geodyn, Ser. Vol. 4, 113–117 (American Geophysical Union, Washington DC, 1981).

    Book  Google Scholar 

  25. Burnley, P. C. & Green, H. W. Nature 338, 753–756 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Vaughan, P. J. & Coe, R. S. J. geophys. Res. 86, 389–404 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Ashby, M. F. & Verrall, R. A. Phil. Trans. R. Soc. lond. A288, 59–95 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Frohlich, C. J. geophys. Res. 92, 13944–13956 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houston, H., Williams, Q. Fast rise times and the physical mechanism of deep earthquakes. Nature 352, 520–522 (1991). https://doi.org/10.1038/352520a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352520a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing