Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Is the guinea-pig a rodent?


THE guinea-pig (Caviaporcellus), traditionally classified as a New World hystricomorph rodent, often shows anomalous morphological and molecular features in comparison with other eutherian mammals1–14. For example, its insulin differs from that of other mammals in anabolic and growth-promoting activities and in its capability to form hexamers5,6. Indeed, the literature about the molecular evolution of guinea-pigs abounds in references to 'convergent evolution', 'extremely rapid rates of substitution', and 'unique evolutionary mechanisms'. These claims are based on the assumption that the guinea-pig is a rodent. Our phylogenetic analyses of amino-acid sequence data, however, imply that the guinea-pig diverged before the separation of the primates and the artiodactyls from the myomorph rodents (rats and mice). If true, then the myomorphs and the caviomorphs do not constitute a natural clade, and the Caviomorpha (or the Histricomorpha) should be elevated in taxonomical rank and regarded as a separate mammalian order distinct from the Rodentia. If, as suggested by recent data15,16, the myomorphs branched off before the divergence among the carnivores, lagomorphs, artiodactyls and primates, then the new order would represent an early divergence in eutherian radiation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Nowak, R. M. & Paradiso, J. L. Walker's Mammals of the World (Johns Hopkins University Press, Baltimore, 1983).

    Google Scholar 

  2. Romer, A. S. Notes and Comments on Vertebrate Paleontology (University of Chicago Press, 1968).

    Google Scholar 

  3. Sahni, A. in Evolutionary Relationships among Rodents: A Multidisciplinary Analysis (eds Luckett, W. P. & Hartenberger, J-L.) 133–150 (Plenum, New York, 1985).

    Book  Google Scholar 

  4. Wood, A. E. in Evolutionary Relationships among Rodents: A Multidisciplinary Analysis (eds Luckett, W. P. & Hartenberger, J.-L.) 475–509 (Plenum, New York, 1985).

    Book  Google Scholar 

  5. Beintema, J. J. & Campagne, R. N. Molec. Biol. Evol. 4, 10–18 (1987).

    CAS  PubMed  Google Scholar 

  6. Watt, V. M. J. biol. Chem. 260, 10926–10929 (1985).

    CAS  PubMed  Google Scholar 

  7. Manao, G. et al. J. Prot. Chem. 7, 417–426 (1988).

    Article  CAS  Google Scholar 

  8. Shinomura, Y., Eng, J., Rattan, S. C. & Yalow, R. S. Comp. Biochem. Physiol. 96B, 239–242 (1990).

    CAS  Google Scholar 

  9. Beintema, J. J. & Neuteboom, B. J. molec. Evol. 19, 145–152 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Sarkar, G., Koeberl, D. D. & Sommer, S. S. Genomics 6, 133–143 (1990).

    Article  CAS  Google Scholar 

  11. Fan, Z.-W., Eng, J., Shaw, G. & Yalow, R. S. Peptides 9, 429–431 (1988).

    Article  CAS  Google Scholar 

  12. Smith, A. I. et al. J. Endocr. 115, R5–R8 (1987).

    Article  CAS  Google Scholar 

  13. Wolfe, P. B. & Cebra, J. J. Molec. Immun. 17, 1493–1505 (1980).

    Article  CAS  Google Scholar 

  14. Eng, J., Du, B.-H., Raufman, J.-P. & Yalow, R. S. Peptides 7, Suppl. 1, 17–20 (1986).

    Article  CAS  Google Scholar 

  15. Easteal, S. Genetics 124, 165–173 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, W.-H., Gouy, M., Sharp, P. M., O'Huigin, C. & Yang, Y.-W. Proc. natn. Acad. Sci. U.S.A. 87, 6703–6707 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Fitch, W. M. Am. Nat. 16, 111–120 (1980).

    Google Scholar 

  18. Felsenstein, J. Syst. Zool. 34, 152–161 (1985).

    Article  Google Scholar 

  19. Li, W.-H. & Gouy, M. Meth. Enzym. 183, 645–659 (1990).

    Article  CAS  Google Scholar 

  20. Fitch, W. M. & Beintema, J. J. Molec. Biol. Evol. 7, 438–443 (1990).

    CAS  PubMed  Google Scholar 

  21. Sarich, V. M. & Wilson, A. C. Science 158, 1200–1203 (1973).

    Article  ADS  Google Scholar 

  22. Shoshani, J., Goodman, M., Czelusniak, J. & Braunitzer, G. in Evolutionary Relationships among Rodents: A Multidisciplinary Analysis (eds Luckett, W. P. & Hartenberger, J.-L. ) 191–210 (Plenum, New York, 1985).

    Book  Google Scholar 

  23. Yu, J.-H., Eng, J., Rattan, S. & Yalow, R. S. Peptides 10, 1195–1197 (1989).

    Article  CAS  Google Scholar 

  24. Li, W.-H., Wu, C.-I. & Luo, C.-C. Molec. Biol. Evol. 2, 150–174 (1985).

    PubMed  Google Scholar 

  25. Felsenstein, J. Syst. Zool. 27, 401–410 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graur, D., Hide, W. & Li, WH. Is the guinea-pig a rodent?. Nature 351, 649–652 (1991).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing