Materials for fuel-cell technologies

Abstract

Fuel cells convert chemical energy directly into electrical energy with high efficiency and low emission of pollutants. However, before fuel-cell technology can gain a significant share of the electrical power market, important issues have to be addressed. These issues include optimal choice of fuel, and the development of alternative materials in the fuel-cell stack. Present fuel-cell prototypes often use materials selected more than 25 years ago. Commercialization aspects, including cost and durability, have revealed inadequacies in some of these materials. Here we summarize recent progress in the search and development of innovative alternative materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Summary of fuel-cell types.
Figure 2: Fuel-cell types and fuel processing.
Figure 3: CO tolerance on Pt/Ru anode electrodes.
Figure 4: Specific conductivity versus reciprocal temperature for selected solid-oxide electrolytes.
Figure 5: Schematic view of the Sulzer Hexis micro-CHP stack for residential applications.
Figure 6: Schematic view of the Delphi–BMW–Global Thermoelectric auxiliary power unit (APU).

References

  1. 1

    Grove, W. R. On voltaic series and the combination of gases by platinum. Phil. Mag. Ser. 3 14, 127–130 (1839).

    Google Scholar 

  2. 2

    Steele, B. C. H. Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci. 36, 1053–1068 (2001).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bauen, A. & Hart, J. Assessment of the environmental benefits of transport and stationary fuel cells. J. Power Sources 86, 482–494 (2000).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Dicks, A. L. & Larminie, J. in Proc. Fuel Cell 2000 (ed. Blomen, L.) 357–367 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

    Google Scholar 

  5. 5

    Kordesch, K. et al. Alkaline fuel cells applications. J. Power Sources 86, 162–165 (2000).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Anahara, R. Total development of fuel cells in Japan. J. Power Sources 49, xi–xiv (1994).

    Article  Google Scholar 

  7. 7

    Whitaker, J. Investment in volume building: the 'virtuous cycle' in PAFC. J. Power Sources 71, 71–74 (1998).

    ADS  CAS  Article  Google Scholar 

  8. 8

    MacKerron, G. Financial considerations of exploiting fuel cell technology. J. Power Sources 86, 28–33 (2000).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kordesch, K. & Simader, G. Fuel Cells and their Applications (VCH, Veinheim, Germany, 1996).

    Google Scholar 

  10. 10

    Larminie, J. & Dicks, A. Fuel Cell Systems Explained (Wiley, Bognor Regis, 2000).

    Google Scholar 

  11. 11

    Borup, R. L. & Vanderborgh, N. E. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. Mater. Res. Soc. Symp. Proc. 393, 151–155 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Barbir, F., Joy, G. C. & Weinberg, D. J. in Proc. Fuel Cell Seminar 2000 483–486 (Courtesy Associates, Washington DC, 2000).

    Google Scholar 

  13. 13

    Scholta, J., Rohland, B., Trapp, V. & Focken, U. Investigations on novel low-cost graphite composite bipolar plates. J. Power Sources 84, 231–234 (1999).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Mahlendorf, F., Niemzig, O. & Kreuz, C. in Proc. Fuel Cell Seminar 2000 138–140 (Courtesy Associates, Washington DC, 2000).

    Google Scholar 

  15. 15

    Mallant, R., Koene, F., Verhoeve, C. & Ruiter, A. in 1994 Fuel Cell Seminar 503–506 (Courtesy Associates, Washington DC, 1994).

    Google Scholar 

  16. 16

    Zawodzinski, C., Mahlon, S. & Gottesfeld, S. in 1996 Fuel Cell Seminar 659–662 (Courtesy Associates, Washington DC, 1996).

    Google Scholar 

  17. 17

    Makkus, R. C., Janssen, A. H. H., de Bruijn, F. A. & Mallant, R. K. A. Use of stainless steel for cost competitive bipolar plates in the SPFC. J. Power Sources 86, 274–282 (2000).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Davies, D. P., Adcock, P. L., Turpin, M. & Rowen, S. J. Stainless steel as a bi-polar plate material for solid polymer fuel cells. J. Power Sources 86, 237–242 (2000).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Starz, K. A., Auer, A., Lehmann, Th. & Zuber, R. Characterization of platinum-based electrocatalysts for mobile PEMFC applications. J. Power Sources 84, 167–172 (1999).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Wilson, M. S., Valerio, J. & Gottesfeld, S. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim. Acta 3, 355–363 (1995).

    Article  Google Scholar 

  21. 21

    Uchida, M., Fukuoka, Y., Sugawara, Y., Ohara, H. & Ohta, A. Improved preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells. J. Electrochem. Soc. 145, 3708–3713 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Gottesfeld, S. et al. in Fuel Cell Seminar 2000 799–802 (Courtesy Associates, Washington DC, 2000).

    Google Scholar 

  23. 23

    McNicol, B. D., Rand, D. A. J. & Williams, K. R. Direct methanol-air fuel cells for road transport. J. Power Sources 83, 15–31 (1999).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Grot, W., Perfluorinated cation exchange polymers. Chemie-Ing.-Techn. MS260/75 (1975).

  25. 25

    Eisman, G. A. in Proc. Vol. 86-13 156–171 (Electrochemical Society, New Jersey, 1986).

    Google Scholar 

  26. 26

    Kolde, J. A., Bahar, B., Wilson, M. S., Zawodzinski, T. A. & Gottesfeld, S. Advanced composite fuel cell membranes. J. Electrochem. Soc. 95, 193–201 (1995).

    Google Scholar 

  27. 27

    Wakizoe, M. & Watanabe, A. in 2000 Fuel Cell Seminar 27–30 (Courtesy Associates, Washington DC, 2000).

    Google Scholar 

  28. 28

    Huang, R. Y. M. & Kim, J. J. J. Appl. Polymer Sci. 89, 4017, 4029 (1984).

    Article  Google Scholar 

  29. 29

    Zerfaß, T. Thesis, Univ. Freiburg (1998).

  30. 30

    Nolte, R., Ledjeff, K., Bauer, M. & Mülhaupt, R. Partially sulphonated poly(arylene ether sulfone)—a versatile proton conducting membrane material for modern energy conversion technologies. J. Membr. Sci. 83, 211–220 (1993).

    CAS  Article  Google Scholar 

  31. 31

    Kerres, J. A. Development of ionomer membranes for fuel cells. J. Membr. Sci. 185, 3–27 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Savinell, R. F. et al. A polymer electrolyte for operation at temperatures upto 200C. J. Electrochem. Soc. 141, L46–L48 (1994).

    CAS  Article  Google Scholar 

  34. 34

    Hasiotis, C. et al. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J. Electrochem. Soc. 148, A513–A519 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Kerres, J., Ullrich, A., Meier, F. & Haring, T. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Minh, N. Q. & Takahashi, T. Science and Technology of Ceramic Fuel Cells (Elsevier, Amsterdam, 1995).

    Google Scholar 

  37. 37

    Yokokawa, H. Phase diagrams and thermodynamic properties of zirconia based ceramics. Key Eng. Mater. 154/155, 37–74 (1998).

    Article  Google Scholar 

  38. 38

    Day, M. J. in 4th European SOFC Forum (ed. McEvoy, A. J.) 133–140 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

    Google Scholar 

  39. 39

    Sverdrup, E. F., Warde, C. J. & Eback, R. L. Design of high temperature solid-electrolyte fuel-cell batteries for maximum power output per unit volume. Energy Conver. 13, 129–141 (1973).

    CAS  Article  Google Scholar 

  40. 40

    Dulieu, D. et al. in 3rd European SOFC Forum (ed. Stevens, P.) 447–458 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 1998).

    Google Scholar 

  41. 41

    Steele, B. C. H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500C. Solid State Ionics 129, 95–110 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Xia, C., Chen, F. & Liu, M. Reduced temperature SOFC fabricated by screen printing. Electrochem. Solid State Lett. 4, A52–A54 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Ralph, J. M., Schoeler, A. C. & Krumpelt, M. Materials for lower temperature SOFC. J. Mater. Sci. 36, 1161–1172 (2001).

    ADS  CAS  Article  Google Scholar 

  44. 44

    Doshi, R. et al. Development of SOFCs that operate at 500C. J. Electrochem. Soc. 146, 1273–1278 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Irving, J. T. et al. in 4th European SOFC Forum (ed. McEvoy, A. J.) 471–477 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

    Google Scholar 

  46. 46

    Murray, E. P. & Tsai, T. A direct-methane fuel cell with a ceria based anode. Nature 400, 649–651 (1999).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Park, S., Craciun, R., Radu, V. & Gorte, R. J. Direct oxidation of hydrocarbons in a SOFC. 1. Methane oxidation. J. Electrochem. Soc. 146, 3603–3606 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Primdahl, S. & Mogensen, M. Exchange current densities in mixed conducting SOFC anodes. (Abstr. BS-PO-24, International Society for Solid State Ionics 2001, 8–13 July 2001, Cairns, Australia.) Solid State Ionics (in the press).

  49. 49

    Hibino, T. et al. A low operating temperature SOFC in hydrocarbon-air mixtures. Science 288, 2031–2033 (2000).

    ADS  CAS  Article  Google Scholar 

  50. 50

    Zhu, B. Advantages of intermediate temperature SOFC for tractionary applications. J. Power Sources 93, 82–86 (2001).

    ADS  CAS  Article  Google Scholar 

  51. 51

    Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ionics 97, 1–15 (1997).

    CAS  Article  Google Scholar 

  52. 52

    Bohn, H. G. & Schober, T. Electrical conductivity of the high temperature proton conductor BaZr0.9Y0.1O2.95 . J. Am. Ceram. Soc. 83, 768–772 (2000).

    CAS  Article  Google Scholar 

  53. 53

    Haile, S. M., Boysen, D. A., Chisholm, C. R. I. & Merle, R. B. Solid acids as fuel cell electrolytes. Nature 410, 910–913 (2001).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Huijsmans, J. P. P. et al. An analysis of endurance issues for MCFC. J. Power Sources 86, 117–121 (2000).

    ADS  CAS  Article  Google Scholar 

  55. 55

    Hockaday, R. et al. in Proc. Fuel Cell 2000 (ed. Blomen, L.) 37–44 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

    Google Scholar 

  56. 56

    Starz, K. A., Ruth, K, Vogt, M. & Zuber, R. in Proc. Int. Symp. Fuel Cells for Vehicles 20–22 November 2000, 210–215 (Nagoya, Japan, 2000).

    Google Scholar 

  57. 57

    Diethelm, R., Batawi, E. & Honegger, K. in Proc. Fuel Cell 2000 (ed. Blomen, L.) 203–211 (European Fuel Cell Forum, Oberrohrdorf, Switzerland, 2000).

    Google Scholar 

  58. 58

    Zizelman, J., Botti, J., Tachtler, J. & Wolfgang, S., SOFC auxiliary power unit: a paradigm shift in electric supply for transportation. Automotive Eng. Int. 108 (Delphi Suppl.), 14–20 (2000).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Brian C. H. Steele or Angelika Heinzel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steele, B., Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001). https://doi.org/10.1038/35104620

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing