Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable quantum tunnelling of magnetic domain walls

Abstract

Perhaps the most anticipated, yet experimentally elusive, macroscopic quantum phenomenon1 is spin tunnelling in a ferromagnet2, which may be formulated in terms of domain wall tunnelling3,4. One approach to identifying such a process is to focus on mesoscopic systems where the number of domain walls is finite and the motion of a single wall has measurable consequences. Research of this type includes magnetotransport measurements on thin ferromagnetic wires5, and magnetization experiments on single particles6,7, nanomagnet ensembles8,9,10 and rare-earth multilayers11. A second method is to investigate macroscopic disordered ferromagnets12,13,14,15, whose dynamics are dominated by domain wall motion, and search the associated relaxation-time distribution functions for the signature of quantum effects. But whereas the classical, thermal processes that operate in these experiments are easily regulated via temperature, the quantum processes have so far not been tunable, making difficult a definitive interpretation of the results in terms of tunnelling. Here we describe a disordered magnetic system for which it is possible to adjust the quantum tunnelling probabilities. For this material, we can model both the classical, thermally activated response at high temperatures and the athermal, tunnelling behaviour at low temperatures within a unified framework, where the domain wall is described as a particle with a fixed mass. We show that it is possible to tune the quantum tunnelling processes by adjusting the ‘mass’ of this particle with an external magnetic field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain wall tunnelling.
Figure 2: Static magnetization.
Figure 3: Phase diagram and spectral characterization of the ordered state.
Figure 4: The characteristic frequency for magnetic domain relaxation as a function of both classical (T) and quantum (Γ) variables (data) along with the best fit of equation (5).

Similar content being viewed by others

References

  1. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Chudnovsky, E. M. & Gunther, L. Quantum tunneling of magnetization in small ferromagnetic particles. Phys. Rev. Lett. 60, 661–664 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Stamp, P. C. E., Chudnovsky, E. M. & Barbara, B. Quantum tunneling of magnetization in solids. Int. J. Mod. Phys. B 6, 1355–1473 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Braun, H.-B., Kyriakidis, J. & Loss, D. Macroscopic quantum tunneling of ferromagnetic domain walls. Phys. Rev. B 56, 8129–8137 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Hong, K. & Giordano, N. Evidence for domain wall tunneling in a quasi-one dimensional ferromagnet. J. Phys. Condens. Matter 8, L301–L306 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Coppinger, F. et al. Single domain switching investigated using telegraph noise spectroscopy: possible evidence for macroscopic quantum tunneling. Phys. Rev. Lett. 75, 3513–3516 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Wernsdorfer, W. et al. Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79, 4014–4017 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Awschalom, D. D., Smyth, J. F., Grinstein, G., DiVincenzo, D. P. & Loss, D. Macroscopic quantum tunneling in magnetic proteins. Phys. Rev. Lett. 68, 3092–3095 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Friedman, J. R., Sarachik, M. P., Tejada, J. & Ziolo, R. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Thomas, L. et al. Macroscopic quantum tunneling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Barbara, B. et al. Quantum tunnelling in magnetic particles, layers and multilayers. Phys. Scripta T 49, 268–273 (1993).

    Article  ADS  Google Scholar 

  12. Uehara, M. & Barbara, B. Noncoherent quantum effects in the magnetization reversal of a chemically disordered magnet: SmCo3.5Cu1.5. J. Phys. 47, 235–238 (1986).

    Article  CAS  Google Scholar 

  13. Tejada, J., Zhang, X. X. & Chudnovsky, E. M. Quantum relaxation in random magnets. Phys. Rev. B 47, 14977–14987 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Vitale, S., Cavalleri, A., Cerdonio, M., Maraner, A. & Prodi, G. A. Thermal equilibrium noise with 1/f spectrum in a ferromagnetic alloy: Anomalous temperature dependence. J. Appl. Phys. 76, 6332–6334 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Arnaudas, J. I., del Moral, A., de la Fuente, C., Ciria, M. & de Groot, P. A. J. Mesoscopic spin tunneling in the hard-random-axis-magnet amorphous alloy Tb2Fe. Phys. Rev. B 50, 547–550 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Bitko, D., Rosenbaum, T. F. & Aeppli, G. Quantum critical behavior for a model magnet. Phys. Rev. Lett. 77, 940–943 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Barbara, B. Magnetization processes in high anisotropy systems. J. Magn. Magn. Mater. 129, 79–86 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Debye, P. Polar Molecules 91–94 (Chemical Catalogue, New York, 1929).

    MATH  Google Scholar 

  19. Brooke, J., Bitko, D., Rosenbaum, T. F. & Aeppli, G. Quantum annealing of a disordered magnet. Science 284, 779–781 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Sachdev, S. Quantum Phase Transitions 39–46 (Cambridge Univ. Press, New York, 1999).

    Google Scholar 

  21. Döring, W. Z. Naturforsch. 3A, 373–379 (1948).

    ADS  Google Scholar 

  22. Kyriakidis, J. & Loss, D. Bloch oscillations of magnetic solitons in anisotropic spin-1/2 chains. Phys. Rev. B 58, 5568–5583 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Pugel, E., Shung, E., Rosenbaum, T. F. & Watkins, S. P. Local magnetometry at high fields and low temperatures using InAs Hall sensors. Appl. Phys. Lett. 71, 2205–2207 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Hansen, P. E., Johansson, T. & Nevald, R. Magnetic properties of rare-earth fluorides: ferromagnetism in LiErF4 and LiHoF4 and crystal-field parameters at the rare-earth and Li sites. Phys. Rev. B 12, 5315–5324 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bitko, S. Girvin, S. Nagel, P. Stamp and T. Witten for discussions. The work at the University of Chicago was supported primarily by the MRSEC Program of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Rosenbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooke, J., Rosenbaum, T. & Aeppli, G. Tunable quantum tunnelling of magnetic domain walls. Nature 413, 610–613 (2001). https://doi.org/10.1038/35098037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35098037

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing