Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The kamikaze approach to membrane transport

Key Points

  • Membrane transport proteins mediate the movement of molecules into, or out of, cells, intracellular organelles and across epithelia. Despite their abundance in the genome and evident importance for the cell, we know little about their structure and function, largely because their hydrophobic and metastable nature makes them difficult to study.

  • Recent developments have allowed initial insight into the structure and mechanism of membrane transport proteins. One example is the lactose permease from Escherichia coli, a member of the major facilitator superfamily. This membrane protein uses free energy released from the energetically downhill translocation of H+ in response to an electrochemical H+ gradient to drive the accumulation of specific sugars against a concentration gradient.

  • Extensive use of site-directed mutagenesis demonstrates that only six amino acid residues are irreplaceable with respect to active lactose transport. Furthermore, mutants engineered for various biochemical and biophysical approaches provide structural information about how the helices are packed and how the irreplaceable residues interact to catalyse transport. Through this work, charge pairs have been identified that mediate substrate binding and H+ translocation.

  • The residues that are irreplaceable for activity are conserved in other members of the oligosaccharide/H+ symport subfamily, but are not found in other members of the major facilitator superfamily. Despite this, it is thought that relatively few residues will be critical for transport in these other families of membrane transport proteins and that the conformational changes involved will be largely rigid body movements of the transmembrane helices.

Abstract

Membrane transport proteins catalyse the movement of molecules into and out of cells and organelles, but their hydrophobic and metastable nature often makes them difficult to study by traditional means. Novel approaches that have been developed and applied to one membrane transport protein, the lactose permease from Escherichia coli, are now being used to study various other membrane proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure model of lac permease.
Figure 2: Uphill and downhill lactose/H+ symport.
Figure 3: Helix packing of lactose permease.
Figure 4: Putative substrate-binding site in lactose permease.
Figure 5: Efflux, exchange and counterflow.
Figure 6: Kinetic scheme for lactose efflux, exchange and counterflow.
Figure 7: Mechanism of lactose/H+ symport by wild-type lactose permease.

Similar content being viewed by others

References

  1. Fleming, K. G. Riding the wave: structural and energetic principles of helical membrane proteins. Curr. Opin. Biotechnol. 11, 67–71 (2000).

    CAS  PubMed  Google Scholar 

  2. Miller, C. Ion channels: doing hard chemistry with hard ions. Curr. Opin. Chem. Biol. 4, 148–151 (2000).

    CAS  PubMed  Google Scholar 

  3. Saier, M. H. Jr Families of transmembrane sugar transport proteins. Mol. Microbiol. 35, 699–710 (2000).Thorough classification of the diversity and relationship between membrane transport proteins that catalyse translocation of various molecules across cell and organellar membranes.

    CAS  PubMed  Google Scholar 

  4. Müller–Hill, B. The lac Operon: A Short History of a Genetic Paradigm (Walter de Gruyter, Berlin, New York, 1996).

    Google Scholar 

  5. Büchel, D. E., Gronenborn, B. & Müller–Hill, B. Sequence of the lactose permease gene. Nature 283, 541–545 (1980).

    PubMed  Google Scholar 

  6. Teather, R. M., Müller–Hill, B., Abrutsch, U., Aichele, G. & Overath, P. Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector. Mol. Gen. Genet. 159, 239–248 (1978).

    CAS  PubMed  Google Scholar 

  7. Newman, M. J. & Wilson, T. H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255, 10583–10586 (1980).

    CAS  PubMed  Google Scholar 

  8. Viitanen, P. et al. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol. 125, 429–452 (1986).

    CAS  PubMed  Google Scholar 

  9. Sahin–Tóth, M., Lawrence, M. C. & Kaback, H. R. Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc. Natl Acad. Sci. USA 91, 5421–5425 (1994).This study uses fused tandem lacY genes to show that the lactose permease does not show the phenomenon of negative dominance, thereby confirming other observations indicating that the permease is functional as a monomer.

    PubMed  Google Scholar 

  10. Le Coutre, J. et al. The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli. Proc. Natl Acad. Sci. USA 94, 10167–10171 (1997).

    CAS  PubMed  Google Scholar 

  11. Patzlaff, J. S., Moeller, J. A., Barry, B. A. & Brooker, R. J. Fourier transform infrared analysis of purified lactose permease: a monodisperse lactose permease preparation is stably folded, α-helical, and highly accessible to deuterium exchange. Biochemistry 37, 15363–15375 (1998).

    CAS  PubMed  Google Scholar 

  12. Calamia, J. & Manoil, C. Lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc. Natl Acad. Sci. USA 87, 4937–4941 (1990).

    CAS  PubMed  Google Scholar 

  13. Wolin, C. & Kaback, H. R. Estimating loop–helix interfaces in a polytopic membrane protein by deletion analysis. Biochemistry 38, 8590–8597 (1999).

    CAS  PubMed  Google Scholar 

  14. Wolin, C. D. & Kaback, H. R. Functional estimation of loop–helix boundaries in the lactose permease of Escherichia coli by single amino acid deletion analysis. Biochemistry 40, 1996–2003 (2001).

    CAS  PubMed  Google Scholar 

  15. Whitelegge, J. P. et al. Toward the bilayer proteome, electrospray ionization–mass spectrometry of large, intact transmembrane proteins. Proc. Natl Acad. Sci. USA 96, 10695–10698 (1999).Electrospray ionization–mass spectrometry of intact lactose permease generates a profile defining the native covalent state of the gene product and its homogeneity, thereby allowing studies on chemical modification and post-translational modification.

    CAS  PubMed  Google Scholar 

  16. LeCoutre, J. et al. Proteomics on full-length membrane proteins using mass spectrometry. Biochemistry 39, 4237–4242 (2000).

    CAS  Google Scholar 

  17. LeCoutre, J. & Kaback, H. R. Structure–function relationships of integral membrane proteins: membrane transporters vs channels. Biopolymers 55, 297–307 (2000).

    CAS  Google Scholar 

  18. Ehring, R., Beyreuther, K., Wright, J. K. & Overath, P. In vitro and in vivo products of E. coli lactose permease gene are identical. Nature 283, 537–540 (1980).

    CAS  PubMed  Google Scholar 

  19. Xie, Z., Turk, E. & Wright, E. M. Characterization of the Vibrio parahaemolyticus Na+-glucose cotransporter: a bacterial member of the sodium/glucose transporter (SGLT) family. J. Biol. Chem. 275, 25959–25964 (2000).

    CAS  PubMed  Google Scholar 

  20. Tamura, N. et al. Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J. Biol. Chem. 276, 20330–20339 (2001).

    CAS  PubMed  Google Scholar 

  21. Frillingos, S. et al. Cys-scanning mutagenesis: a novel approach to structure–functions relationships in polytopic membrane proteins. FASEB J. 12, 1281–1299 (1998).Review summarizing the construction of a library of single-cysteine mutants and showing that only six of the 417 amino acids are irreplaceable with respect to active transport.

    CAS  PubMed  Google Scholar 

  22. Kaback, H. R. & Wu, J. What to do while awaiting crystals of a membrane transport protein and thereafter. Acc. Chem. Res. 32, 805–813 (1999).

    CAS  Google Scholar 

  23. Sahin–Tóth, M., Karlin, A. & Kaback, H. R. Unraveling the mechanism of lactose permease of Escherichia coli. Proc. Natl Acad. Sci. USA 97, 10729–10732 (2000).Using a novel binding assay, the p K a of mutants in the six irreplaceable residues with respect to ligand binding is measured. The findings led to a detailed mechanistic model for lactose/H+ symport.

    PubMed  Google Scholar 

  24. Rastogi, V. K. & Girvin, M. E. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402, 263–268 (1999).

    CAS  Google Scholar 

  25. Venkatesan, P., Yu, Y. & Kaback, H. R. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix X. Biochemistry 39, 10656–10661 (2000).

    CAS  PubMed  Google Scholar 

  26. Venkatesan, P., Kwaw, I., Hu, Y. & Kaback, H. R. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix VII. Biochemistry 39, 10641–10648 (2000).

    CAS  PubMed  Google Scholar 

  27. Venkatesan, P., Liu, Z., Hu, Y. & Kaback, H. R. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix II. Biochemistry 39, 10649–10655 (2000).

    CAS  PubMed  Google Scholar 

  28. Kwaw, I. et al. Site-directed labeling of the lactose permease of Escherichia coli: helices IV and V which contain the major determinants for substrate binding. Biochemistry (in the press).

  29. Akabas, M. H., Stauffer, D. A., Xu, M. & Karlin, A. Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258, 307–310 (1992).First studies describing scanning cysteine accessibility mutagenesis (SCAM), using methyl thiosulphonate derivatives to study the ion-conduction pathway in the nicotinic acetylcholine receptor.

    CAS  PubMed  Google Scholar 

  30. Fox, C. F. & Kennedy, E. P. Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli. Proc. Natl Acad. Sci. USA 54, 891–899 (1965).

    CAS  PubMed  Google Scholar 

  31. Bieseler, B., Prinz, H. & Beyreuther, K. Topological studies of lactose permease of Escherichia coli by protein sequence analysis. Ann. NY Acad. Sci. 456, 309–325 (1985).

    CAS  PubMed  Google Scholar 

  32. Jung, H., Jung, K. & Kaback, H. R. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. I. Site-directed mutagenesis studies. Biochemistry 33, 12160–12165 (1994).

    CAS  PubMed  Google Scholar 

  33. Wolin, C. D. & Kaback, H. R. Thiol cross-linking of transmembrane domains IV and V in the lactose permease of Escherichia coli. Biochemistry 39, 6130–6135 (2000).

    CAS  PubMed  Google Scholar 

  34. Zhao, M. et al. Proximity between Glu126 and Arg144 in the lactose permease of Escherichia coli. Biochemistry 38, 7407–7412 (1999).

    CAS  PubMed  Google Scholar 

  35. Zhao, M. et al. Nitroxide scanning electron paramagnetic resonance of helices IV, V and the intervening loop in the lactose permease of Escherichia coli. Biochemistry 38, 15970–15977 (1999).

    CAS  PubMed  Google Scholar 

  36. Frillingos, S., Gonzalez, A. & Kaback, H. R. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escheichia coli: Glu126 and Arg144 are essential. Biochemistry 36, 14284–14290 (1997).

    CAS  PubMed  Google Scholar 

  37. Sahin–Tóth, M. et al. Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli. Biochemistry 38, 813–819 (1999).

    PubMed  Google Scholar 

  38. Venkatesan, P. & Kaback, H. R. The substrate binding site in the lactose permease of Escherichia coli. Proc. Natl Acad. Sci. USA 95, 9802–9807 (1998).Provides evidence that Glu126 (helix IV) and Arg144 (helix V) are charge paired and crucial for substrate binding. A model of the binding site is presented.

    CAS  PubMed  Google Scholar 

  39. Wu, J., Hardy, D. & Kaback, H. R. Tertiary contacts of helix V in the lactose permease determined by site-directed chemical crosslinking in situ. Biochemistry 38, 2320–2325 (1999).

    CAS  PubMed  Google Scholar 

  40. Wu, J., Hardy, D. & Kaback, H. R. Site-directed chemical crosslinking demonstrate that helix IV is close to helices VII and XI in the lactose permease. Biochemistry 38, 1715–1720 (1999).

    CAS  PubMed  Google Scholar 

  41. Wang, Q. et al. Ligand-induced movement of helix X in the lactose permease of Escherichia coli: a fluorescence quenching study. Biochemistry 36, 14120–14127 (1997).

    CAS  PubMed  Google Scholar 

  42. Jung, K., Jung, H. & Kaback, H. R. Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Biochemistry 33, 3980–3985 (1994).Using excimer fluorescence, three of the irreplaceable residues in helices IX (Arg302) and X (His322 and Glu325) are shown to be in close proximity.

    CAS  PubMed  Google Scholar 

  43. LeCoutre, J. et al. Fourier transform infrared spectroscopy reveals a rigid α-helical assembly for the tetrameric Streptomyces lividans K+ channel. Proc. Natl Acad. Sci. USA 95, 6114–6117 (1998).

    CAS  Google Scholar 

  44. Alvarez, J., Lee, D. C., Baldwin, S. A. & Chapman, D. Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. J. Biol. Chem. 262, 3502–3509 (1987).

    CAS  PubMed  Google Scholar 

  45. Arkin, I. T., Russ, W. P., Lebendiker, M. & Schuldiner, S. Determining the secondary structure and orientation of EmrE, a multi-drug transporter, indicates a transmembrane four-helix bundle. Biochemistry 35, 7233–7238 (1996).

    CAS  PubMed  Google Scholar 

  46. Downer, N. W., Bruchman, T. J. & Hazzard, J. H. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange. J. Biol. Chem. 261, 3640–3647 (1986).

    CAS  PubMed  Google Scholar 

  47. Wright, E. M. Renal Na+-glucose cotransporters. Am. J. Physiol. Renal Physiol. 280, F10–F18 (2000).

    Google Scholar 

  48. Ujwal, M. L. et al. Role of glutamate-269 in the lactose permease of Escherichia coli. Mol. Membr. Biol. 1, 9–16 (1994).

    Google Scholar 

  49. Franco, P. J. & Brooker, R. J. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. J. Biol. Chem. 269, 7379–7386 (1994).

    CAS  PubMed  Google Scholar 

  50. Sahin-Tóth, M. & Kaback, H. R. Arg-302 facilitates deprotonation of Glu-325 in the transport mechanism of the lactose permease from Escherichia coli. Proc. Natl Acad. Sci. USA 98, 6068–6073 (2001).

    PubMed  Google Scholar 

  51. Sahin–Tóth, M., Akhoon, K. M., Runner, J. & Kaback, H. R. Ligand recognition by the lactose permease of Escherichia coli: specificity and affinity are defined by distinct structural elements of galactopyranosides. Biochemistry 39, 5097–5103 (2000).

    PubMed  Google Scholar 

  52. Frillingos, S. et al. The role of helix VIII in the lactose permese of Escherichia coli. I. Cys–scanning mutagenesis. Protein Sci. 6, 431–437 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, J. & Kaback, H. R. A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc. Natl Acad. Sci. USA 93, 14498–14502 (1996).

    CAS  PubMed  Google Scholar 

  54. Jessen–Marshall, A. E. & Brooker, R. J. Evidence that transmembrane segment 2 of the lactose permease is part of a conformationally sensitive interface between the two halves of the protein. J. Biol. Chem. 271, 1400–1404 (1996).

    PubMed  Google Scholar 

  55. Wu, J. & Kaback, H. R. Helix proximity and ligand-induced conformational changes in the lactose permease of Escherichia coli determined by site-directed chemical crosslinking. J. Mol. Biol. 270, 285–293 (1997).

    CAS  PubMed  Google Scholar 

  56. Wu, J., Hardy, D. & Kaback, H. R. Transmembrane helix tilting and ligand-induced conformational changes in the lactose permease determined by site-directed chemical crosslinking in situ. J. Mol. Biol. 282, 959–967 (1998).

    CAS  PubMed  Google Scholar 

  57. Wu, J., Hardy, D. & Kaback, H. R. Tilting of helix I and ligand-induced changes in the lactose permease determined by site–directed chemical crosslinking in situ. Biochemistry 37, 15785–15790 (1998).

    CAS  PubMed  Google Scholar 

  58. Robertson, D. E. et al. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry 19, 5692–5702 (1980).

    CAS  PubMed  Google Scholar 

  59. Viitanen, P. et al. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects. Biochemistry 22, 2531–2536 (1983).

    CAS  PubMed  Google Scholar 

  60. Weinglass, A. B., Smirnova, I. N. & Kaback, H. R. Engineering conformational flexibility in the lactose permease of Escherichia coli: use of glycine-scanning mutagenesis to rescue mutant Glu325Asp. Biochemistry 40, 769–776 (2001).

    CAS  PubMed  Google Scholar 

  61. MacKenzie, K. R. & Engelman, D. M. Structure-based prediction of the stability of transmembrane helix–helix interactions: the sequence dependence of glycophorin A dimerization. Proc. Natl Acad. Sci. USA 95, 3583–3590 (1998).

    CAS  PubMed  Google Scholar 

  62. Overath, P., Brenner, M., Gulik–Krzywicki, T., Shechter, E. & Letellier, L. Lipid phase transitions in cytoplasmic and outer membranes of Escherichia coli. Biochim. Biophys. Acta 389, 358–369 (1975).

    CAS  PubMed  Google Scholar 

  63. McElhaney, R. N. Effects of membrane lipids on transport and enzymatic activities. Curr. Top. Membr. Transport 17, 317–370 (1982).

    CAS  Google Scholar 

  64. Carruthers, A. & Melchior, D. L. Effects of lipid environment on membrane transport: the human erythrocyte sugar transport protein/lipid bilayer system. Annu. Rev. Physiol. 50, 257–271 (1988).

    CAS  PubMed  Google Scholar 

  65. Zhang, W. & Kaback, H. R. Effect of the lipid phase transition on the lactose permease from Escherichia coli. Biochemistry 47, 14538–14542 (2000).

    Google Scholar 

  66. Carrasco, N. et al. Characterization of site-directed mutants in the lac permease of Escherichia coli. 2. Glutamate-325 replacements. Biochemistry 28, 2533–2539 (1989).

    CAS  PubMed  Google Scholar 

  67. Garcia, M. L. et al. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 1. Effect of pH and imposed membrane potential on efflux, exchange, and counterflow. Biochemistry 22, 2524–2531 (1983).

    CAS  PubMed  Google Scholar 

  68. Bailey, J. & Manoil, C. Missense mutations that inactivate Escherichia coli lac permease. J. Mol. Biol. 277, 199–213 (1998).

    CAS  PubMed  Google Scholar 

  69. Stewart, C., Bailey, J. & Manoil, C. Mutant membrane protein toxicity. J. Biol. Chem. 273, 28078–28084 (1998).

    CAS  PubMed  Google Scholar 

  70. Bibi, E. & Kaback, H. R. In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc. Natl Acad. Sci. USA 87, 4325–4329 (1990).Demonstrates that functional lactose permease can be expressed in two contiguous, non-overlapping polypeptides that correspond to the amino- and carboxy-terminal six helices. The finding has been exploited for crosslinking studies.

    CAS  PubMed  Google Scholar 

  71. Zen, K. H. et al. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Biochemistry 33, 8198–8206 (1994).

    CAS  PubMed  Google Scholar 

  72. Braun, P. et al. Alanine insertion scanning mutagenesis of lactose permease transmembrane helices. J. Biol. Chem. 272, 29566–29571 (1997).

    CAS  PubMed  Google Scholar 

  73. Goswitz, V. C., Matzke, E. A., Taylor, M. R., Jessen–Marshall, A. E. & Brooker, R. J. Structural topology of transmembrane helix 10 in the lactose permease of Escherichia coli. J. Biol. Chem. 271, 21927–21932 (1996).

    CAS  PubMed  Google Scholar 

  74. Manoil, C. & Bailey, J. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. J. Mol. Biol. 267, 250–263 (1997).

    CAS  PubMed  Google Scholar 

  75. McKenna, E., Hardy, D. & Kaback, H. R. Insertional mutagenesis of hydrophilic domains in the lactose permease of Escherichia coli. Proc. Natl Acad. Sci. USA 89, 11954–11958 (1992).

    CAS  PubMed  Google Scholar 

  76. Von Heijne, G. A day in the life of Dr. K or how I learned to stop worrying and love lysozyme: a tragedy in six acts. J. Mol. Biol. 293, 367–379 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Mark Girvin for computer modelling and to Ernest Wright for helpful discussions. The 'Kamikaze approach' to membrane transport is taken from a review by G. von Heijne76.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

lacY

GLUT1

EmrE

cystic fibrosis

CFTR

connexin 26

Pendred syndrome

diastrophic dysplasia

long QT syndrome

Menkes disease

Wilson's disease

congenital renal glycosuria

GLUT2

Fanconi–Bickel syndrome

hyperkalemic periodic paralysis

spinocerebellar ataxia type 6

familial hemiplegic migraine

central core disease

congenital stationary night blindness

myotonia congenitas

autosomal dominant frontal lobe

nocturnal epilepsy

congenital myasthenic syndromes

hyperekplexia

FURTHER INFORMATION

NCBI's genes and disease site

Kaback lab

Glossary

ELECTROCHEMICAL H+ GRADIENT

\(\overline{μ}\)H+). When two aqueous phases are separated by a membrane, the electrochemical potential difference of H+ between the two phases is expressed as Δ\(\overline{μ}\)H+/F = ΔΨ − 2.3RT/FΔpH, where F is the Faraday constant, ΔΨ is the electric potential difference between two phases, R is the gas constant, T is the absolute temperature, and ΔpH is the difference in the concentration of H+ across the membrane.

CYSTEINE-SCANNING MUTAGENESIS

The use of site-directed mutagenesis to replace individual residues in a given protein, or a region of that protein, with cysteine (preferably where all native cysteines have been replaced without loss of function).

CUT AND PASTE

Unique, engineered restriction enzyme sites in the lacY DNA are used to replace a portion of a mutant with a given cysteine replacement with a homologous segment encoding another single cysteine mutant, to construct a lacY gene encoding a protein with two cysteine residues.

SECOND-SITE-SUPPRESSOR ANALYSIS

Involves selection of a second mutation that corrects (suppresses) the phenotype of an original inactivating mutation. This can be done by classical or site-directed mutagenesis.

EXCIMER FLUORESCENCE

When two four-membered conjugated pyrene moieties are within 3.5 Å of each other and are in the correct orientation, an excited-state dimer (excimer) is observed in the fluorescence-emission spectrum, which emits at a higher wavelength than the monomer fluorescence.

DIVALENT-METAL-BINDING SITE

The simplest requirement for this consists of two imidazole side chains (histidine residues) within close proximity. Mn2+ binding is then measured directly by electron paramagnetic resonance.

THIOL CROSSLINKING

A technique that uses two cysteine residues, which can either be oxidized to form a disulphide bond or crosslinked with a homobifunctional crosslinking agent.

DISCONTINUOUS MONOCLONAL ANTIBODY EPITOPE

Refers to an antibody-binding site that is composed of portions of the protein that are not continuous with respect to the primary amino-acid sequence.

POLARIZED ATTENUATED TOTAL REFLECTION–FOURIER TRANSFORM INFRARED SPECTROSCOPY

A technique used to measure the average helix tilt angle of a membrane protein. Attenuated reflection refers to the use of a reflection element on which a protein–phospholipid mixture is dried. Multiple reflections enhance the sensitivity of the technique.

LIPID ORDER PARAMETER

The extent to which the fatty-acyl side chains of the membrane phospholipids are ordered.

HYDROGEN/DEUTERIUM (H/D) EXCHANGE

The rate at which the backbone amide protons exchange with deuterons. This can be measured either by infrared spectroscopy or by studying the amide II vibration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaback, H., Sahin-Tóth, M. & Weinglass, A. The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2, 610–620 (2001). https://doi.org/10.1038/35085077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing