Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Morphological and ecological complexity in early eukaryotic ecosystems

Abstract

Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea1; C27–C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split2,3. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks4,5,6. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions7. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protistan microfossils from the Roper Group.
Figure 2: Location and generalized stratigraphy of the Roper Group, northern Australia.
Figure 3: Palaeoenvironmental distribution of Roper fossils, showing relationships among physical environment, fossil abundance, and taxonomic diversity.

Similar content being viewed by others

References

  1. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576–4579 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  CAS  Google Scholar 

  3. Hayes, J. M. in Early Life on Earth (ed. Bengtson, S.) 220–236 (Columbia Univ. Press, New York, 1994).

    Google Scholar 

  4. Zhang, Z. Clastic facies microfossils from the Chaunlingguo Formation (1800 Ma) near Jixian, North China. J. Micropalaeontol. 5, 9–16 (1986).

    Article  Google Scholar 

  5. Summons, R. E., Powell, T. G. & Boreham, C. J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia. III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 51, 3075–3082 (1988).

    Article  ADS  Google Scholar 

  6. Han, T.-M. & Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron Formation, Michigan. Science 257, 232–235 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Knoll, A. H. in Palynology: Principles and Applications (eds Jansonius, J. & McGregor, D. C.) Vol. I 51–80 (American Association of Stratigraphic Palynologists Foundation, Tulsa, Oklahoma, 1996).

    Google Scholar 

  8. Yin, L. Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China. Rev. Palaeobot. Palynol. 98, 15–25 (1998).

    Article  Google Scholar 

  9. Butterfield, N. J., Knoll, A. H. & Swett, K. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils Strata 34, 1–84 (1994).

    Google Scholar 

  10. Jansen, R.-P. RNA-cytoskeletal associations. FASEB J. 13, 455–466 (1999).

    Article  CAS  Google Scholar 

  11. Schmidt, A. & Hall, M. N. Signalling the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14, 305–338 (1998).

    Article  CAS  Google Scholar 

  12. Xiao, S., Knoll, A. H., Kaufman, A. J., Yin, L. & Zhang, Y. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Res. 84, 197–220 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Jackson, M. J., Sweet, I. P., Page, R. W. & Bradshaw, B. E. in Integrated Basin Analysis of the Isa Superbasin Using Seismic, Well-log, and Geopotential Data: an Evaluation of the Economic Potential of the Northern Lawn Hill Platform (eds Bradshaw, B. E. & Scott, D. L.) (Australian Geological Survey Organisation Record 1999/19, Canberra, Australia, 1999).

    Google Scholar 

  14. Kralik, M. Rb–Sr age determinations on Precambrian carbonate rocks of the Carpentarian McArthur Basin, Northern Territory, Australia. Precambrian Res. 18, 157–170 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Abbott, S. T. & Sweet, L. P. Tectonic control on third-order sequences in a siliciclastic ramp-style basin: an example from the Roper Superbasin (Mesoproterozoic), northern Australia. Aust. J. Earth Sci. 47, 637–657 (2000).

    Article  ADS  Google Scholar 

  16. Jackson, M. J. & Raiswell, R. Sedimentology and carbon-sulfur geochemistry of the Velkerri Formation, a mid-Proterozoic potential oil source in northern Australia. Precambrian Res. 54, 81–108 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Peat, C. R., Muir, M. D., Plumb, K. A., McKirdy, D. M. & Norvick, M. S. Proterozoic microfossils from the Roper Group, Northern Territory. Bur. Min. Res. J. Austr. Geol. Geophys. 3, 1–17 (1978).

    Google Scholar 

  18. Jankauskas, T. V. Precambrian microfossils from the USSR 5–33 (Nauka, Leningrad, 1989).

    Google Scholar 

  19. Veis, A. F. & Vorobyeva, N. G. Riphean and Vendian microfossils of the Anabar Uplift. Isvest. Akad. Nauk. USSR Ser. Geol. 8, 114–130 (1992).

    Google Scholar 

  20. Zhou, H. et al. Sequence Stratigraphic Research in Meso- to Neoproterozoic Successions of the Southern North China Platform 5–36 (Geological Publishing House, Beijing, 1999).

    Google Scholar 

  21. Jacobsen, S. R. Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio, and New York. J. Paleontol. 53, 1197–1212 (1979).

    Google Scholar 

  22. Vidal, G. & Nysteun, J. P. Micropaleontology, depositional environment, and biostratigraphy of the Upper Proterozoic Hedmark Group, southern Norway. Am. J. Sci. A 290, 170–211 (1990).

    Google Scholar 

  23. Butterfield, N. J. & Chandler, F. W. Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology 35, 943–957 (1992).

    Google Scholar 

  24. Petrov, P. Yu. & Veis, A. F. Facial-ecological structure of the Derevnya Formation microbiota: Upper Riphean, Turukhansk Uplift, Siberia. Stratigr. Geol. Correl. 3, 435–4605 (1995).

    Google Scholar 

  25. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Anbar, A. D. & Knoll, A. H. Trace metal limitation of primary production 1.85–1.25 Ga. 1999 American Geophysical Union Fall Meetinghttp://www.agu.org/meetings/fm99top.html〉 (1999).

  27. German, T. N. Organic World One Billion Years Ago 1–50 (Leningrad, Nauka, 1990).

    Google Scholar 

  28. Samuelsson, J., Dawes, P. R. & Vidal, G. Acid-resistant palynomorphs from the Proterozoic Thule Group, northwest Greenland. Precambrian Res. 96, 1–23 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to the Australian Geological Survey Organization's NABRE project. We thank J. Jackson, P. Southgate and other members of the NABRE team for access to unpublished observations, helpful discussions, and advice on sampling. Core library staff in Canberra (AGSO) and Darwin (Northern Territory Geological Survey) greatly facilitated sample collection. Y. Leiming provided information on Chinese stratigraphy. Research supported in part by a grant from NASA, the NASA Astrobiology Institute, the Australia Research Council, and Macquarie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Knoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javaux, E., Knoll, A. & Walter, M. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001). https://doi.org/10.1038/35083562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083562

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing