Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reykjanes 'V'-shaped ridges originating from a pulsing and dehydrating mantle plume

Abstract

Prominent crustal lineations straddle the Reykjanes ridge, south of Iceland (Fig. 1). These giant V-shaped features are thought to record temporal variations in magma production at the Reykjanes ridge axis, associated with along-axis flow of Icelandic plume material1. It has been proposed that this flow is channelled preferentially along the ridge axis2,3,4, and that temporal variability is induced by fluctuations of the Iceland plume itself1,4,5,6,7 or, alternatively, by relocations of the ridge axis on Iceland8. Here I present a geodynamic model that predicts the formation of crustal V-shaped ridges from a pulsing and radially flowing mantle plume. In this model, plume pulses produce mantle temperature perturbations that expand away from the plume in all directions beneath the zone of partial melting. The melting zone has a high viscosity owing to mantle dehydration at the onset of partial melting9. This high-viscosity region allows for reasonable variations in crustal thickness, produces crustal Vs that extend hundreds of kilometres along the axis, and prevents the plume material from being preferentially channelled along the ridge axis. The angle of the crustal V-shaped features relative to the ridge axis reflects the rate of lateral plume flow, which remains several times greater than the ridge half-spreading rate over the length of a crustal V. Consequently, this radially expanding plume produces lineations in crustal thickness and free-air gravity anomalies that appear to be nearly straight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Satellite-derived free-air gravity anomalies in region surrounding Iceland27.
Figure 2: Potential temperatures and flow fields (left) and differences from the steady-state model (right).
Figure 3: Maps of (a) predicted crustal thickness (contour interval 5 km) and (b) free-air gravity anomaly (contour interval 10 mGal) predicted from crustal structure.
Figure 4: Maximum crustal thickness variations (dots) predicted by models of different variation in plume flux.

Similar content being viewed by others

References

  1. Vogt, P. R. Asthenosphere motion recorded by the ocean floor south of Iceland. Earth Planet. Sci. Lett. 13, 153–160 (1971).

    Article  ADS  Google Scholar 

  2. Schilling, J.-G. Upper mantle heterogeneities and dynamics. Nature 314, 62–67 (1985).

    Article  ADS  Google Scholar 

  3. Vogt, P. R. Plumes, subaxial pipe flow, and topography along the mid-ocean ridge. Earth Planet. Sci. Lett. 29, 309–325 (1976).

    Article  ADS  Google Scholar 

  4. White, R. S., Brown, J. W. & Smallwood, J. R. The temperature of the Iceland plume and origin of outward propagating V-shaped ridges. J. Geol. Soc. Lond. 152, 1039–1045 (1995).

    Article  Google Scholar 

  5. Hanan, B. B. & Schilling, J.-G. The dynamic evolution of the Iceland mantle plume: the lead isotope perspective. Earth Planet. Sci. Lett. 151, 43–60 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Schilling, J.-G. & Noe-Nygaard, A. Faeroe-Iceland plume: Rare-earth evidence. Earth Planet. Sci. Lett. 24, 1–14 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Schilling, J. G., Meyer, P. S. & Kingsley, R. H. Evolution of the Iceland hotspot. Nature 296, 313–320 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Hardarson, B. S., Fitton, J. G., Ellam, R. M. & Pringle, M. S. Rift relocation—a geochemical and geochronological investigation of a paleo-rift in northwest Iceland. Earth Planet. Sci. Lett. 153, 181–196 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: Implications for rheology, melt extraction, and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Ito, G., Lin, J. & Gable, C. W. Dynamics of mantle flow and melting at a ridge-centered hotspot: Iceland and the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 144, 53–74 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Ito, G., Shen, Y., Hirth, G. & Wolfe, C. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett. 165, 81–96 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Gable, C. W. Numerical Models of Plate Tectonics and Mantle Convection in Three Dimensions. Thesis, Harvard Univ. (1989).

    Google Scholar 

  13. Feigner, M. A. & Richards, M. A. The fluid dynamics of plume-ridge and plume-plate interactions: an experimental investigation. Earth Planet. Sci. Lett. 129, 171–182 (1995).

    Article  ADS  Google Scholar 

  14. Ribe, N., Christensen, U. R. & Theissing, J. The dynamics of plume-ridge interaction. 1. Ridge-centered plumes. Earth Planet. Sci. Lett. 134, 155–168 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Allen, R. M. et al. The thin hot plume beneath Iceland. Geophys. J. Int. 137, 51–63 (1999).

    Article  ADS  Google Scholar 

  16. Wolfe, C., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Menke, W., Brandsdóttir, B., Einarsson, P. & Bjarnason, I. Th. Reinterpretation of the RRISP-77 Iceland shear-wave profiles. Geophys. J. Int. 126, 166–172 (1996).

    Article  ADS  Google Scholar 

  18. Staples, R. K. et al. Färoe-Iceland ridge experiment. 1. Crustal structure of northeastern Iceland. J. Geophys. Res. 102, 7849–7866 (1997).

    Article  ADS  Google Scholar 

  19. Vogt, P. R. in Structure and development of the Greenland-Scotland Ridge, New Methods and Concepts (eds Bott, M. H. P., Saxov, S., Talwani, M. & Thiede, J.) 191–213 (Plenum, New York, 1983).

    Book  Google Scholar 

  20. Scott, D. R., Stevenson, D. J. & Whitehead, J. A. Jr Observations of solitary waves in a viscously deformable pipe. Nature 319, 759–761 (1986).

    Article  ADS  Google Scholar 

  21. Olson, P. & Christensen, U. Solitary wave propagation in a fluid conduit within a viscous matrix. J. Geophys. Res. 91, 6367–6374 (1986).

    Article  ADS  Google Scholar 

  22. McDougall, I., Kristjansson, L. & Saemundsson, K. Magnetostratigraphy and geochronology of northwest Iceland. J. Geophys. Res. 89, 7029–7060 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Watkins, N. D. & Walker, G. P. L. Magnetostratigraphy of eastern Iceland. Am. J. Sci. 277, 513–584 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Albers, M. Channeling of plume flow beneath mid-ocean ridges. Earth Planet. Sci. Lett. 187, 207–220 (2001).

    Article  ADS  CAS  Google Scholar 

  25. Cannat, M. et al. Mid-Atlantic Ridge–Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth Planet. Sci. Lett. 173, 257–269 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Vogt, P. R. Global magmatic episodes: new evidence and implications for the steady-state mid-oceanic ridge. Geology 7, 93–98 (1979).

    Article  ADS  Google Scholar 

  27. Sandwell, D. & Smith, W. H. F. Marine gravity from Geosat and ERS-1 altimetry. J. Geophys. Res. 102, 10039–10054 (1997).

    Article  ADS  Google Scholar 

  28. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994).

    Article  ADS  Google Scholar 

  29. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Parker, R. L. The rapid calculation of potential anomalies. Geophys. J. R. Astron. Soc. 31, 447–455 (1973).

    Article  ADS  Google Scholar 

  31. Wessel, P. & Smith, W. H. F. New version of the Generic Mapping Tools released. Eos 76, 329 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Discussions with D. Lizarralde motivated much of the early work of this study. I also appreciate valuable comments by C. Lesher, J.-G. Schilling and D. Sparks. Figures 1, 3 and 4 were produced using Generic Mapping Tools31. Funding was provided by NSF-OCE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, G. Reykjanes 'V'-shaped ridges originating from a pulsing and dehydrating mantle plume. Nature 411, 681–684 (2001). https://doi.org/10.1038/35079561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079561

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing