Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide

Abstract

Peptide bond formation is the principal reaction of protein synthesis. It takes place in the peptidyl transferase centre of the large (50S) ribosomal subunit. In the course of the reaction, the polypeptide is transferred from peptidyl transfer RNA to the α-amino group of amino acyl-tRNA. The crystallographic structure of the 50S subunit showed no proteins within 18 Å from the active site, revealing peptidyl transferase as an RNA enzyme1. Reported unique structural and biochemical features of the universally conserved adenine residue A2451 in 23S ribosomal RNA (Escherichia coli numbering) led to the proposal of a mechanism of rRNA catalysis that implicates this nucleotide as the principal catalytic residue2,3. In vitro genetics allowed us to test the importance of A2451 for the overall rate of peptide bond formation. Here we report that large ribosomal subunits with mutated A2451 showed significant peptidyl transferase activity in several independent assays. Mutations at another nucleotide, G2447, which is essential to render catalytic properties to A2451 (refs 2, 3), also did not dramatically change the transpeptidation activity. As alterations of the putative catalytic residues do not severely affect the rate of peptidyl transfer the ribosome apparently promotes transpeptidation not through chemical catalysis, but by properly positioning the substrates of protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The secondary structure of the central loop of domain V of T. aquaticus 23S rRNA.
Figure 2: Peptidyl transferase activity of reconstituted large ribosomal subunits harbouring mutations of the proposed catalytic nucleotide A2451.
Figure 3: The time course of peptidyl transferase reactions catalysed by reconstituted 50S subunits containing mutations at position 2451.

Similar content being viewed by others

References

  1. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Muth, G. W., Ortoleva-Donnelly, L. & Strobel, S. A. A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science 289, 947–950 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Moazed, D. & Noller, H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57, 585–597 (1989).

    Article  CAS  Google Scholar 

  5. Bocchetta, M., Xiong, L. & Mankin, A. S. 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc. Natl Acad. Sci. USA 95, 3525–3530 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Steiner, G., Kuechler, E. & Barta, A. Photo-affinity labelling at the peptidyl transferase centre reveals two different positions for the A- and P-sites in domain V of 23S rRNA. EMBO J. 7, 3949–3955 (1988).

    Article  CAS  Google Scholar 

  7. Kearsey, S. E. & Craig, I. W. Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature 290, 607–608 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Barta, A. et al. Mechanism of ribosomal peptide bond formation. Science 291, 203a (2001) (on-line).

    Article  Google Scholar 

  9. Khaitovich, P., Tenson, T., Kloss, P. & Mankin, A. S. Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38, 1780–1788 (1999).

    Article  CAS  Google Scholar 

  10. Monro, R. E. & Marcker, K. A. Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. J. Mol. Biol. 25, 347–350 (1967).

    Article  CAS  Google Scholar 

  11. Hart, H. E. & Greenwald, E. B. Scintillation proximity assay (SPA)—a new method of immunoassay. Direct and inhibition mode detection with human albumin and rabbit antihuman albumin. Mol. Immunol. 16, 265–267 (1979).

    Article  CAS  Google Scholar 

  12. Swaney, S. M. et al. in Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy C-104 (American Society for Microbiology, Washington DC, 1998).

    Google Scholar 

  13. Xiong, L. Q. et al. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. J. Bacteriol. 182, 5325–5331 (2000).

    Article  CAS  Google Scholar 

  14. Green, R. & Noller, H. F. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38, 1772–1779 (1999).

    Article  CAS  Google Scholar 

  15. Green, R., Samaha, R. R. & Noller, H. F. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J. Mol. Biol. 266, 40–50 (1997).

    Article  CAS  Google Scholar 

  16. Porse, B. T. & Garrett, R. A. Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach. J. Mol. Biol. 249, 1–10 (1995).

    Article  CAS  Google Scholar 

  17. O'Connor, M. & Dahlberg, A. E. Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc. Natl Acad. Sci. USA 90, 9214–9218 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Nakano, S., Chadalavada, D. M. & Bevilacqua, P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2001).

    Article  ADS  Google Scholar 

  19. Yean, S. L., Wuenschell, G., Termini, J. & Lin, R. J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2001).

    Article  ADS  Google Scholar 

  20. Krayevsky, A. A. & Kukhanova, M. K. The peptidyltransferase center of ribosomes. Prog. Nucl. Acid Res. Mol. Biol. 23, 1–51 (1979).

    CAS  Google Scholar 

  21. Nierhaus, K. H., Schulze, H. & Cooperman, B. S. Molecular mechanisms of the ribosomal peptidyl transferase center. Biochem. Int. 1, 185–192 (1980).

    CAS  Google Scholar 

  22. Samaha, R. R., Green, R. & Noller, H. F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Khaitovich, P., Tenson, T., Mankin, A. S. & Green, R. Peptidyl transferase activity catalyzed by protein-free 23S ribosomal RNA remains elusive. RNA 5, 605–608 (1999).

    Article  CAS  Google Scholar 

  24. Zhang, B. & Cech, T. R. Peptide bond formation by in vitro selected ribozymes. Nature 390, 96–100 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Crick, F. H. C., Brenner, S., Klug, A. & Pieczenik, G. A speculation on the origin of protein synthesis. Orig. Life. 7, 389–397 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Khaitovich, P. & Mankin, A. S. in The Ribosome. Structure, Function, Antibiotics and Cellular Interactions (eds Garrett, R. A. et al.) 229–243 (ASM, Washington DC, 2000).

    Google Scholar 

  27. Green, R. & Noller, H. F. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA 2, 1011–1021 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Blaha, G. et al. Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol. 317, 292–309 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Kim, D. F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999).

    Article  CAS  Google Scholar 

  30. Nierhaus, K. H. in Ribosomes and Protein Synthesis. A Practical Approach (ed. Spedding, G.) 161–189 (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank M. Gomez and L. Xiong for help with experiments; S. Swaney and D. Shinabarger for providing SPA assay protocols and reagents; and J. Piccirilli, A. Mesecar and A. Neyfakh for helpful discussions. This work was supported by an NIH grant to A.S.M. N.P. was supported by an Erwin Schroedinger fellowship from the Austrian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Mankin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polacek, N., Gaynor, M., Yassin, A. et al. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411, 498–501 (2001). https://doi.org/10.1038/35078113

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078113

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing