Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Entanglement purification for quantum communication

Abstract

The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography1,2 and quantum teleportation3. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification4,5,6,7 is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols4,5,6 are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication8. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scheme showing the principle of entanglement purification after Bennett et al.4.
Figure 2: Using a polarizing beam splitter as a polarization comparer.
Figure 3: Our purification scheme using polarizing beam splitters.

References

  1. Bennett, C. H. & Brassard, G. in Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing 175–179 (IEEE, New York, 1984).

    Google Scholar 

  2. Ekert, A. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  4. Bennett, C. H. et al. Purification of noisy entanglement, and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    ADS  CAS  Article  Google Scholar 

  5. Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996).

    ADS  CAS  Article  Google Scholar 

  6. Duan, L. M., Giedke, G., Cirac, J. L. & Zoller, P. Entanglement purification of gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002–4005 (2000).

    ADS  CAS  Article  Google Scholar 

  7. Bose, S., Vedral, V. & Knight, P. L. Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999).

    ADS  CAS  Article  Google Scholar 

  8. Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  CAS  Article  Google Scholar 

  9. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    ADS  CAS  Article  Google Scholar 

  10. Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  11. Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).

    ADS  CAS  Article  Google Scholar 

  12. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  CAS  Article  Google Scholar 

  13. Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. Bouwmeester, D., Pan, J.-W., Weinfurter, H. & Zeilinger, A. High-fidelity teleportation of independent qubits. J. Mod. Opt. 47, 279–289 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  15. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000).

    ADS  CAS  Article  Google Scholar 

  16. Naik, D. S., Peterson, C. G., White, A. G., Berglund, A. J. & Kwiat, P. G. Entangled state quantum cryptography: eavesdropping on the Ekert protocol. Phys. Rev. Lett. 84, 4733–4736 (2000).

    ADS  CAS  Article  Google Scholar 

  17. Tittel, W., Brendel, T., Zbinden, H. & Gisin, N. Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000).

    ADS  CAS  Article  Google Scholar 

  18. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    ADS  CAS  Article  Google Scholar 

  19. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  20. Rauschenbeutel, A. et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999).

    ADS  CAS  Article  Google Scholar 

  21. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  CAS  Article  Google Scholar 

  22. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  23. Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515–519 (2000).

    ADS  CAS  Article  Google Scholar 

  24. Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1064–1065 (1999).

    ADS  Article  Google Scholar 

  25. Sanaka, K., Kawahara, K. & Kuga, T. New high-efficiency source of photon pairs for engineering quantum entanglement. Preprint quant-ph/0012028 at 〈http://xxx.lanl.gov/ (2000).

  26. Tanzilli, S. et al. Highly efficient photon-pair source using a periodically poled lithium niobate waveguide. Preprint quant-ph/0012053 at 〈http://xxx.lanl.gov/ (2000).

  27. Pan, J.-W. & Zeilinger, A. Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  28. Bouwmeester, D. Bit-flip-error rejection in optical quantum communication. Phys. Rev. A 63, R040301 (2001).

    ADS  Article  Google Scholar 

  29. Yamamoto, T., Koashi, M. & Imoto, N. A concentration scheme for two partially entangled photon pairs. Preprint quant-ph/0101042 at 〈http://xxx.lanl.gov/ (2001).

  30. Cerf, N. J., Adami, C. & Kwiat, P. G. Optical simulation of quantum logic. Phys. Rev. A 57, R1477–1480 (1998).

    ADS  MathSciNet  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L.-M. Duan, H. Ritsch, T. Tyc, L. Vaidman, P. Zoller and M. Zukowski for discussions. This work was supported by the Austrian Science Foundation FWF, the Austrian academy of sciences, and the TMR and QIPC programmes of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Zeilinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pan, JW., Simon, C., Brukner, Č. et al. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001). https://doi.org/10.1038/35074041

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35074041

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing