Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crackling noise

Abstract

Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes. A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling. Because these systems exhibit regular behaviour over a huge range of sizes, their behaviour is likely to be independent of microscopic and macroscopic details, and progress can be made by the use of simple models. The fact that these models and real systems can share the same behaviour on many scales is called universality. We illustrate these ideas by using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses, and we highlight some continuing challenges in this still-evolving field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The Earth crackles.
Figure 2: Magnets crackle73,74,75,76.
Figure 3: Self-similarity.
Figure 4: Renormalization-group flows.
Figure 5: Flows in the space of earthquake models.
Figure 6: Attracting fixed point.
Figure 7: Scaling of avalanche shapes.
Figure 8: Critical exponents in various dimensions.
Figure 9: Comparing experiments with theory: critical exponents.
Figure 10: Fractal spatial structure of an avalanche74.

References

  1. Kadanoff, L. P. Scaling laws for Ising models near Tc . Physics 2, 263–272 (1966).

    Google Scholar 

  2. Wilson, K. G. Problems in physics with many scales of length. Sci. Am. 241, 140–157 (1979).

    Google Scholar 

  3. Pfeuty, P. & Toulouse, G. Introduction to the Renormalization Group and to Critical Phenomena (Wiley, London, 1977).

    Google Scholar 

  4. Yeomans, J. M. Statistical Mechanics of Phase Transitions (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  5. Fisher, M. E. Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  6. Martin, P. C., Siggia, E. D. & Rose, H. A. Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973).

    ADS  Google Scholar 

  7. De Dominicis, C. Dynamics as a substitute for replicas in systems with quenched random impurities. Phys. Rev. B 18, 4913–4919 (1978).

    ADS  Google Scholar 

  8. Sompolinsky, H. & Zippelius, A. Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses. Phys. Rev. B 25, 6860–6875 (1982).

    ADS  CAS  Google Scholar 

  9. Zippelius, A. Critical-dynamics of spin-glasses. Phys. Rev. B 29, 2717–2723 (1984).

    ADS  CAS  Google Scholar 

  10. Gutenberg, B. & Richter, C. F. Seismicity of the Earth and Associated Phenomena (Princeton Univ. Press, Princeton, 1954).

    Google Scholar 

  11. Houle, P. A. & Sethna, J. P. Acoustic emission from crumpling paper. Phys. Rev. E 54, 278–283 (1996).

    ADS  CAS  Google Scholar 

  12. Kramer, E. M. & Lobkovsky, A. E. Universal power law in the noise from a crumpled elastic sheet. Phys. Rev. E 53, 1465–1469 (1996).

    ADS  CAS  Google Scholar 

  13. Glanz, J. No hope of silencing the phantom crinklers of the opera. New York Times 1 June 2000, A14 (2000).

  14. Sethna, J. P. Hysteresis and avalanches 〈http://www.lassp.cornell.edu/sethna/hysteresis/hysteresis.html〉 (1996).

  15. Sethna, J. P. et al. Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347–3351 (1993).

    ADS  CAS  PubMed  Google Scholar 

  16. Burridge, R. & Knopoff, L. Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 3411–3471 (1967).

    Google Scholar 

  17. Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343 (1983).

  18. Carlson, J. M. & Langer, J. S. Mechanical model of an earthquake fault. Phys. Rev. A 40, 6470–6484 (1989).

    ADS  MathSciNet  CAS  Google Scholar 

  19. Bak, P. & Tang, C. Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. 94, 15635–15637 (1989).

    ADS  Google Scholar 

  20. Chen, K., Bak, P. & Obukhov, S. P. Self-organized criticality in a crack-propagation model of earthquakes. Phys. Rev. A 43, 625–630 (1991).

    ADS  CAS  PubMed  Google Scholar 

  21. Olami, Z., Feder, H. J. S. & Christensen, K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992).

    ADS  CAS  PubMed  Google Scholar 

  22. Miltenberger, P., Sornette, D. & Vanette, C. Fault self-organization and optimal random paths selected by critical spatiotemporal dynamics of earthquakes. Phys. Rev. Lett. 71, 3604–3607 (1993).

    ADS  CAS  PubMed  Google Scholar 

  23. Crowie, P. A., Vanette, C. & Sornette, D. Statistical physics model for the spatiotemporal evolution of faults. J. Geophys. Res. Solid Earth 98, 21809–21821 (1993).

    Google Scholar 

  24. Carlson, J. M., Langer, J. S. & Shaw, B. E. Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994).

    ADS  MATH  Google Scholar 

  25. Myers, C. R., Shaw, B. E. & Langer, J. S. Slip complexity in a crustal-plane model of an earthquake fault. Phys. Rev. Lett. 77, 972–975 (1996).

    ADS  CAS  PubMed  Google Scholar 

  26. Shaw, B. E. & Rice, J. R. Existence of continuum complexity in the elastodynamics of repeated fault ruptures. J. Geophys. Res. 105, 23791–23810 (2000).

    ADS  Google Scholar 

  27. Ben-Zion, Y. & Rice, J. R. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res. 100, 12959–12983 (1995).

    ADS  Google Scholar 

  28. Fisher, D. S., Dahmen, K., Ramanathan, S. & Ben-Zion, Y. Statistics of earthquakes in simple models of heterogeneous faults. Phys. Rev. Lett. 78, 4885–4888 (1997).

    ADS  CAS  Google Scholar 

  29. Fisher, D. S. Threshold behavior of charge-density waves pinned by impurities. Phys. Rev. Lett. 50, 1486–1489 (1983).

    ADS  Google Scholar 

  30. Fisher, D. S. Sliding charge-density waves as a dynamic critical phenomenon. Phys. Rev. B 31, 1396–1427 (1985).

    ADS  CAS  Google Scholar 

  31. Littlewood, P. B. Sliding charge-density waves: a numerical study. Phys. Rev. B 33, 6694–6708 (1986).

    ADS  CAS  Google Scholar 

  32. Narayan, O. & Fisher, D. S. Critical behavior of sliding charge-density waves in 4-ɛ dimensions. Phys. Rev. B 46, 11520–11549 (1992).

    ADS  CAS  Google Scholar 

  33. Middleton, A. A. & Fisher, D. S. Critical behavior of charge-density waves below threshold: numerical and scaling analysis. Phys. Rev. B 47, 3530–3552 (1993).

    ADS  CAS  Google Scholar 

  34. Myers, C. R. & Sethna, J. P. Collective dynamics in a model of sliding charge-density waves. I. Critical behavior. Phys. Rev. B 47, 11171–11192 (1993).

    ADS  CAS  Google Scholar 

  35. Thorne, R. E. Charge-density-wave conductors. Phys. Today 49, 42–47 (1996).

    ADS  CAS  Google Scholar 

  36. Bak, P., Tang, C. & Wiesenfeld K. Self-organized criticality: an explanation for 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    ADS  CAS  PubMed  Google Scholar 

  37. Bak, P., Tang, C. & Wiesenfeld K. Self-organized criticality. Phys. Rev. A 38, 364–374 (1988).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  38. deGennes, P. G. Superconductivity of Metals and Alloys p. 83 (Benjamin, New York, 1966).

    Google Scholar 

  39. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. II Sect. 37–3 (Addison Wesley, Reading, MA, 1963–1965).

  40. Jaeger, H. M., Liu, C. & Nagel, S. R. Relaxation at the angle of repose. Phys. Rev. Lett. 62, 40–43 (1989).

    ADS  CAS  PubMed  Google Scholar 

  41. Nagel, S. R. Instabilities in a sandpile. Rev. Mod. Phys. 64, 321–325 (1992).

    ADS  Google Scholar 

  42. Tewari, S. et al. Statistics of shear-induced rearrangements in a two-dimensional model foam. Phys. Rev. E 60, 4385–4396 (1999).

    ADS  CAS  Google Scholar 

  43. Solé, R. V. & Manrubia, S. C. Extinction and self-organized criticality in a model of large-scale evolution. Phys. Rev. E 54, R42–R45 (1996).

  44. Newman, M. E. J. Self-organized criticality, evolution, and the fossil extinction record. Proc. R. Soc. Lond. B 263, 1605–1610 (1996).

    ADS  Google Scholar 

  45. Newman, M. E. J. & Palmer, R. G. Models of extinction: a review. Preprint adap-org/9908002 at 〈http://xxx.lanl.gov〉 (1999).

  46. Cieplak, M. & Robbins, M. O. Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60, 2042–2045 (1988).

    ADS  CAS  PubMed  Google Scholar 

  47. Koiller, B. & Robbins, M. O. Morphology transitions in three-dimensional domain growth with Gaussian random fields. Phys. Rev. B 62, 5771–5778 (2000).

    ADS  CAS  Google Scholar 

  48. Nattermann, T., Stepanow, S., Tang, L. H. & Leschhorn N. Dynamics of interface depinning in a disordered medium. J. Phys. II (Paris) 2, 1483–1488 (1992).

    CAS  Google Scholar 

  49. Narayan, O. & Fisher, D. S. Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 48, 7030–7042 (1993).

    ADS  CAS  Google Scholar 

  50. Leschhorn, H., Nattermann, T., Stepanow, S. & Tang, L.-H. Driven interface depinning in a disordered medium. Ann. Phys. (Leipzig) 6, 1–34 (1997).

    ADS  Google Scholar 

  51. Roters, L., Hucht, A., Lubeck, S., Nowak, U. & Usadel, K. D. Depinning transition and thermal fluctuations in the random-field Ising model. Phys. Rev. E 60, 5202–5207 (1999).

    ADS  CAS  Google Scholar 

  52. Field, S., Witt, J., Nori, F. & Ling, X. Superconducting vortex avalanches. Phys. Rev. Lett. 74, 1206–1209 (1995).

    ADS  CAS  PubMed  Google Scholar 

  53. Ertaş, D. & Kardar, M. Anisotropic scaling in depinning of a flux line. Phys. Rev. Lett. 73, 1703–1706 (1994).

    ADS  PubMed  Google Scholar 

  54. Ertaş, D. & Kardar, M. Anisotropic scaling in threshold critical dynamics of driven directed lines. Phys. Rev. B 53, 3520–3542 (1996).

    ADS  Google Scholar 

  55. Lilly, M. P., Wootters, A. H. & Hallock, R. B. Spatially extended avalanches in a hysteretic capillary condensation system: superfluid He-4 in nuclepore. Phys. Rev. Lett. 77, 4222–4225 (1996).

    ADS  CAS  PubMed  Google Scholar 

  56. Guyer, R. A. & McCall, K. R. Capillary condensation, invasion percolation, hysteresis, and discrete memory. Phys. Rev. B 54, 18–21 (1996).

    ADS  CAS  Google Scholar 

  57. Ortín, J. et al. Experiments and models of avalanches in martensites. J. Phys. IV (Paris) 5, 209–214 (1995).

    Google Scholar 

  58. Bouchaud, J. P. Power-laws in economy and finance: some ideas from physics. (Proc. Santa Fe Conf. Beyond Efficiency.) J. Quant. Finance (in the press); also available as preprint cond-mat/0008103 at 〈http://xxx.lanl.gov〉.

  59. Bak, P., Paczuski, M. & Shubik, M. Price variations in a stock market with many agents. Physica A 246, 430–453 (1997).

    ADS  Google Scholar 

  60. Lu, E. T., Hamilton, R. J., McTiernan, J. M. & Bromond, K. R. Solar flares and avalanches in driven dissipative systems. Astrophys. J. 412, 841–852 (1993).

    ADS  Google Scholar 

  61. Carreras, B. A., Newman, D. E., Dobson, I. & Poole, A. B. Initial evidence for self-organized criticality in electrical power system blackouts. In Proc. 33rd Hawaii Int. Conf. Syst. Sci. (ed. Sprague, R. H. Jr) (IEEE Comp. Soc., Los Alamitos, CA, 2000).

    Google Scholar 

  62. Sachtjen, M. L., Carreras, B. A. & Lynch, V. E. Disturbances in a power transmission system. Phys. Rev. E 61, 4877–4882 (2000).

    ADS  CAS  Google Scholar 

  63. Carlson, J. M. & Doyle, J. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys. Rev. E 60, 1412–1427 (1999).

    ADS  CAS  Google Scholar 

  64. Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532 (2000).

    ADS  CAS  PubMed  Google Scholar 

  65. Newman, M. The power of design. Nature 405, 412–413 (2000).

    CAS  PubMed  Google Scholar 

  66. Galam, S. Rational group decision making: a random field Ising model at T=0. Physica A 238, 66–80 (1997).

    ADS  Google Scholar 

  67. Petri, A., Paparo, G., Vespignani, A., Alippi, A. & Costantini, M. Experimental evidence for critical dynamics in microfracturing processes. Phys. Rev. Lett. 73, 3423–3426 (1994).

    ADS  CAS  PubMed  Google Scholar 

  68. Garcimartín, A., Guarino, A., Bellon, L. & Ciliberto, S. Statistical properties of fracture precursors. Phys. Rev. Lett. 79, 3202–3205 (1997).

    ADS  Google Scholar 

  69. Curtin, W. A. & Scher, H. Analytic model for scaling of breakdown. Phys. Rev. Lett. 67, 2457–2460 (1991).

    ADS  CAS  PubMed  Google Scholar 

  70. Herrman, H. J. & Roux, S. (eds) Statistical Models for the Fracture of Disordered Media (North Holland, Amsterdam, 1990).

    Google Scholar 

  71. Chakrabarti, B. K. & Benguigui, L. G. Statistical Physics of Fracture and Breakdown in Disordered Systems (Clarendon, Oxford, 1997).

    MATH  Google Scholar 

  72. Zapperi, S., Ray, P., Stanley, H. E. & Vespignani, A. First-order transition in the breakdown of disordered media. Phys. Rev. Lett. 78, 1408–1411 (1997).

    ADS  CAS  Google Scholar 

  73. Perković, O., Dahmen, K. A. & Sethna, J. P. Avalanches, Barkhausen noise, and plain old criticality. Phys. Rev. Lett. 75, 4528–4531 (1995).

    ADS  PubMed  Google Scholar 

  74. Kuntz, M. C., Perković, O., Dahmen, K. A., Roberts, B. W. & Sethna, J. P. Hysteresis, avalanches, and noise: numerical methods. Comput. Sci. Eng. 1, 73–81 (1999).

    Google Scholar 

  75. Kuntz, M. C. & Sethna, J. P. Hysteresis, avalanches, and noise: numerical methods 〈http://www.lassp.cornell.edu/sethna/hysteresis/code/〉 (1998).

  76. Perković, O., Dahmen, K. A. & Sethna, J. P. Disorder-induced critical phenomena in hysteresis: numerical scaling in three and higher dimensions. Phys. Rev. B 59, 6106–6119 (1999).

    ADS  Google Scholar 

  77. Berger, A., Inomata, A., Jiang, J. S., Pearson, J. E. & Bader, S. D. Experimental observation of disorder-driven hysteresis-loop criticality. Phys. Rev. Lett. 85, 4176–4179 (2000).

    ADS  CAS  PubMed  Google Scholar 

  78. Dahmen, K. A. & Sethna, J. P. Hysteresis, avalanches, and disorder induced critical scaling: a renormalization group approach. Phys. Rev. B 53, 14872–14905 (1996).

    ADS  CAS  Google Scholar 

  79. da Silveira, R. & Kardar, M. Critical hysteresis for N-component magnets. Phys. Rev. E 59, 1355–1367 (1999).

    ADS  CAS  Google Scholar 

  80. Dahmen, K. A. & Sethna, J. P. Hysteresis loop critical exponents in 6-ɛ dimensions. Phys. Rev. Lett. 71, 3222–3225 (1993).

    ADS  CAS  PubMed  Google Scholar 

  81. Visscher, P. B. Renormalization-group derivation of Navier-Stokes equation. J. Stat. Phys. 38, 989–1013 (1985).

    ADS  MathSciNet  MATH  Google Scholar 

  82. Kadanoff, L. P., McNamara, G. R. & Zanetti, G. From automata to fluid flow: comparisons of simulation and theory. Phys. Rev. A 40, 4527–4541 (1989).

    ADS  CAS  Google Scholar 

  83. Hwa, T. & Kardar, M. Dissipative transport in open systems: an investigation of self-organized criticality. Phys. Rev. Lett. 62, 1813–1816 (1989).

    ADS  CAS  PubMed  Google Scholar 

  84. Grinstein, G., Lee, D.-H. & Sachdev, S. Conservation laws, anisotropy, and “self-organized criticality” in noisy non-equilibrium systems. Phys. Rev. Lett. 64, 1927–1930 (1990).

    ADS  CAS  PubMed  Google Scholar 

  85. Sornette, D., Sweeping of an instability—an alternative to self-organized criticality to get power laws without parameter tuning. J. Phys. I (Paris) 4, 209–221 (1994).

    CAS  Google Scholar 

  86. Sykes, L. R., Shaw, B. E. & Scholz, C. H. Rethinking earthquake prediction. Pure Appl. Geophys. 155, 207 (1999).

    ADS  Google Scholar 

  87. Carlson, J. M., Chayes, J. T., Grannan, E. R. & Swindle, G. H. Self-organized criticality and singular diffusion. Phys. Rev. Lett. 65, 2547–2550 (1990).

    ADS  CAS  PubMed  Google Scholar 

  88. Urbach, J. S., Madison, R. C. & Markert, J. T. Interface depinning, self-organized criticality, and the Barkhausen effect. Phys. Rev. Lett. 75, 276–279 (1995).

    ADS  CAS  PubMed  Google Scholar 

  89. Narayan, O. Self-similar Barkhausen noise in magnetic domain wall motion. Phys. Rev. Lett. 77, 3855–3857 (1996).

    ADS  CAS  PubMed  Google Scholar 

  90. Zapperi, P., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect. Phys. Rev. B 58, 6353–6366 (1998).

    ADS  CAS  Google Scholar 

  91. Pazmandi F., Zarand G. & Zimanyi G. T. Self-organized criticality in the hysteresis of the Sherrington-Kirkpatrick model. Phys. Rev. Lett. 83, 1034–1037 (1999).

    ADS  CAS  Google Scholar 

  92. Pazmandi F., Zarand G. & Zimanyi G. T. Self-organized criticality in the hysteresis of the Sherrington-Kirkpatrick model. Physica B 275, 207–211 (2000).

    ADS  CAS  Google Scholar 

  93. Perković, O., Dahmen, K. A. & Sethna, J. P. Disorder-induced critical phenomena in hysteresis: a numerical scaling analysis. Preprint cond-mat/9609072, appendix A, at 〈http://xxx.lanl.gov〉 (1996).

  94. Kuntz, M. C. & Sethna, J. P. Noise in disordered systems: the power spectrum and dynamic exponents in avalanche models. Phys. Rev. B 62, 11699–11708 (2000).

    ADS  CAS  Google Scholar 

  95. Spasojević, D., Bukvić, S., Milos̆ević, S. & Stanley, H. E. Barkhausen noise: elementary signals, power laws, and scaling relations. Phys. Rev. E 54, 2531–2546 (1996).

    ADS  Google Scholar 

  96. Family, F., Vicsek, T. & Meakin, P. Are random fractal clusters isotropic? Phys. Rev. Lett. 55, 641–644 (1985).

    ADS  CAS  PubMed  Google Scholar 

  97. Dotsenko, V. S. et al. Critical and topological properties of cluster boundaries in the 3D Ising model. Phys. Rev. Lett. 71, 811–814 (1993).

    ADS  CAS  PubMed  Google Scholar 

  98. Kadanoff, L. P., Nagel, S. R., Wu, L. & Zhou, S.-M. Scaling and universality in avalanches. Phys. Rev. A 39, 6524–6537 (1989).

    ADS  CAS  Google Scholar 

  99. Dhar, D. The Abelian sandpile and related models. Physica A 263, 4–25 (1999).

    ADS  Google Scholar 

  100. Paczuski, M., Maslov, S. & Bak, P. Avalanche dynamics in evolution, growth, and depinning models. Phys. Rev. E 414–443 (1996).

  101. Malcai, O., Lidar, D. A., Biham, O. & Avnir, D. Scaling range and cutoffs in empirical fractals. Phys. Rev. E 56, 2817–2828 (1997).

    ADS  CAS  Google Scholar 

  102. Fleming, R. M. & Schneemeyer, L. F. Observation of a pulse-duration memory effect in K0.30MoO3 . Phys. Rev. Lett. 33, 2930–29321(1986).

    ADS  CAS  Google Scholar 

  103. Coppersmith, S. N. & Littlewood, P. B. Pulse-duration memory effect and deformable charge-density waves. Phys. Rev. B 36, 311–317 (1987).

    ADS  CAS  Google Scholar 

  104. Middleton, A. A. Asymptotic uniqueness of the sliding state for charge-density waves. Phys. Rev. Lett. 68, 670–673 (1992).

    ADS  CAS  PubMed  Google Scholar 

  105. Amengual, A. et al. Systematic study of the martensitic transformation in a Cu-Zn-Al alloy—reversibility versus irreversibility via acoustic emission. Thermochim. Acta 116, 195–308 (1987).

    CAS  Google Scholar 

  106. Perković, O. & Sethna, J. P. Improved magnetic information storage using return-point memory. J. Appl. Phys. 81, 1590–1597 (1997).

    ADS  Google Scholar 

  107. Pepke, S. L., Carlson, J. M. & Shaw, B. E. Prediction of large events on a dynamical model of a fault. J. Geophys. Res. 99, 6769 (1994).

  108. Council of the National Seismic System. Composite Earthquake Catalog Archive 〈http://www.cnss.org〉 (2000).

  109. US Geological Survey National Earthquake Information Center. Earthquake information for the world 〈http://www.neic.cr.usgs.gov〉 (2001).

  110. Sethna, J. P., Kuntz, M. C., & Houle, P. A. Crackling noise 〈http://simscience.org/crackling〉. (1999).

  111. Brézin E. & De Dominicis C. Dynamics versus replicas in the random field Ising model. C.R. Acad. Sci. II 327, 383–390 (1999).

    ADS  MATH  Google Scholar 

  112. Cote, P. J. & Meisel, L. V. Self-organized criticality and the Barkhausen effect. Phys. Rev. Lett. 67, 1334–1337 (1991).

    ADS  CAS  PubMed  Google Scholar 

  113. Meisel, L. V. & Cote, P. J. Power laws, flicker noise, and the Barkhausen effect. Phys. Rev. B 46, 10822–10828 (1992).

    ADS  CAS  Google Scholar 

  114. Stierstadt, K. & Boeckh, W. Die Temperaturabhangigkeit des Magnetischen Barkhauseneffekts. 3. Die Sprunggrössenverteilung längs der Magnetisierungskurve. Z. Phys. 186, 154 (1965).

  115. Bertotti, G., Durin, G. & Magni, A. Scaling aspects of domain wall dynamics and Barkhausen effect in ferromagnetic materials. J. Appl. Phys. 75, 5490–5492 (1994).

    ADS  CAS  Google Scholar 

  116. Bertotti, G., Fiorillo, F. & Montorsi, A. The role of grain size in the magnetization process of soft magnetic materials. J. Appl. Phys. 67, 5574–5576 (1990).

    ADS  CAS  Google Scholar 

  117. Lieneweg, U. Barkhausen noise of 3% Si-Fe strips after plastic deformation. IEEE Trans. Magn. 10, 118–120 (1974).

    ADS  CAS  Google Scholar 

  118. Lieneweg, U. & Grosse-Nobis, W. Distribution of size and duration of Barkhausen pulses and energy spectrum of Barkhausen noise investigated on 81% nickel-iron after heat treatment. Int. J. Magn. 3, 11–16 (1972).

    CAS  Google Scholar 

  119. Bittel, H. Noise of ferromagnetic materials. IEEE Trans. Magn. 5, 359–365 (1969).

    ADS  Google Scholar 

  120. Montalenti, G. Barkhausen noise in ferromagnetic materials. Z. Angew. Phys. 28, 295–300 (1970).

    CAS  Google Scholar 

  121. Durin, G. & Zapperi, S. Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys. Rev. Lett. 84, 4705–4708 (2000).

    ADS  CAS  PubMed  Google Scholar 

  122. Petta, J. R. & Weissmann, M. B. Barkhausen pulse structure in an amorphous ferromagnet: characterization by high-order spectra. Phys. Rev. E 57, 6363–6369 (1998).

    ADS  CAS  Google Scholar 

  123. Alessandro, B., Beatrice, C., Bertotti, G., & Montorsi, A., Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. 1. Theory. J. Appl. Phys. 68, 2901–2907 (1990).

    ADS  Google Scholar 

  124. Alessandro, B., Beatrice, C., Bertotti, G. & Montorsi, A. Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. 2. Experiment. J. Appl. Phys. 68, 2908–2915 (1990).

    ADS  CAS  Google Scholar 

  125. Walsh, B., Austvold, S. & Proksch, R. Magnetic force microscopy of avalanche dynamics in magnetic media. J. Appl. Phys. 84, 5709–5714 (1998).

    ADS  CAS  Google Scholar 

  126. Krysac, L. C. & Maynard, J. D. Evidence for the role of propagating stress waves during fracture. Phys. Rev. Lett. 81, 4428–4431 (1998).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

The perspective on this field described in this paper grew out of a collaboration with M. Kuntz. We thank A. Mehta for supplying the data for Fig. 7b, and D. Dolgert, M. Newman, J.-P. Bouchaud, L. C. Krysac, D. Fisher and J. Thorpe for helpful comments and references. This work was supported by NSF grants, the Cornell Theory Center and IBM.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sethna, J., Dahmen, K. & Myers, C. Crackling noise. Nature 410, 242–250 (2001). https://doi.org/10.1038/35065675

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065675

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing