Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent manipulation of semiconductor quantum bits with terahertz radiation

Abstract

Quantum bits1,2,3,4,5 (qubits) are the fundamental building blocks of quantum information processors, such as quantum computers6. A qubit comprises a pair of well characterized quantum states that can in principle be manipulated quickly compared to the time it takes them to decohere by coupling to their environment7. Much remains to be understood about the manipulation and decoherence of semiconductor qubits. Here we show that hydrogen-atom-like motional states of electrons bound to donor impurities in currently available semiconductors can serve as model qubits. We use intense pulses8 of terahertz radiation to induce coherent, damped Rabi oscillations9,10 in the population of two low-lying states of donor impurities in GaAs11,12,13. Our observations demonstrate that a quantum-confined extrinsic electron in a semiconductor can be coherently manipulated like an atomic electron, even while sharing space with 105 atoms in its semiconductor host. We anticipate that this model system will be useful for measuring intrinsic decoherence processes, and for testing both simple and complex manipulations of semiconductor qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing of terahertz (THz) photoconducting processes and sample.
Figure 2: Terahertz pulse shape and photoconductive response.
Figure 3: Rabi oscillations in photocurrent.
Figure 4: Photocurrent as a function of pulse duration for various detunings at a fixed terahertz field.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Sherwin, M. S., Imamoglu, A. & Montroy, T. Quantum computation with quantum dots and terahertz cavity quantum electrodynamics. Phys. Rev. A 60, 3508–3514 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Vrijen, R. et al. Electron spin resonance transistors for quantum computing in silicon-germanium hetero-structures. Preprint quant-ph/9905096 at http://xxx.lanl.gov (1999).

  6. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  ADS  CAS  Google Scholar 

  7. DiVincenzo, D. P. Quantum computation. Science 270, 255–261 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Hegmann, F. A. et al. Time-resolved photoresponse of a gallium-doped germanium photoconductor using a variable pulse-width terahertz source. Appl. Phys. Lett. 76, 262–264 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937).

    Article  ADS  CAS  Google Scholar 

  10. Boyd, R. W. Nonlinear Optics (Academic, Boston, 1992).

    Google Scholar 

  11. Kohn, W. in Solid State Physics (eds Seitz, F. & Turnbull, D.) Vol. 5, 257–320 (Academic, New York, 1957).

    Google Scholar 

  12. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 1999).

    Book  Google Scholar 

  13. Klaassen, T. O., Dunn, J. L. & Bates, C. A. in Atoms and Molecules in Strong External Fields (eds Schmelcher, P. & Schweizer, W.) 291–300 (Plenum, New York, 1998).

    Google Scholar 

  14. Stillman, G. E., Wolfe, C. M. & Dimmock, J. O. Magnetospectroscopy of shallow donors in GaAs. Solid State Commun. 7, 921–925 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Burghoorn, J., Klaassen, T. O. & Wenckebach, W. T. The dynamics of shallow donor ionization in n-GaAs studied with sub-ns FIR-induced photoconductivity. Semicond. Sci. Technol. 9, 30–34 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Larsen, D. M. Inhomogeneous line broadening in donor magneto-optical spectra. Phys. Rev. B 8, 535–553 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Planken, P. C. M. et al. Far-infrared picosecond time-resolved measurement of the free-induction decay in GaAs:Si. Phys. Rev. B 51, 9643–9647 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Cundiff, S. T. et al. Rabi flopping in semiconductors. Phys. Rev. Lett. 73, 1178–1181 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Schulzgen, A. et al. Direct observation of excitonic Rabi oscillations in semiconductors. Phys. Rev. Lett. 82, 2346–2349 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Ramian, G. The new UCSB free-electron lasers. Nucl. Instrum. Methods Phys. Res. A 318, 225–229 (1992).

    Article  ADS  Google Scholar 

  21. Hegmann, F. A. & Sherwin, M. S. Generation of picosecond far-infrared pulses using laser activated semiconductor reflection switches. Proc. SPIE 2842, 90–105 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Bockelmann, U. Phonon scattering between zero-dimensional electronic states: Spatial versus Landau quantization. Phys. Rev. B 50, 17271–17279 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Barrie, R. & Nishikawa, K. Phonon broadening of impurity spectral lines II. Application to silicon. Can. J. Phys. 41, 1823–1835 (1963).

    Article  ADS  CAS  Google Scholar 

  24. Nishikawa, K. & Barrie, R. Phonon broadening of impurity spectral lines I. General theory. Can. J. Phys. 41, 1135–1173 (1963).

    Article  ADS  CAS  Google Scholar 

  25. Stanley, C. R. et al. Electrical characterization of molecular beam epitaxial GaAs with peak electron mobilities up to approximately =4·105cm2/V-s. Appl. Phys. Lett. 58, 478–480 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Stanley, C. R., Holland, M. C., Hutchins, R. H., Kean, A. H. & Johnson, N. P. in Institute of Physics Conference Series Vol. 112 (ed. Singer, K. E.) 67–72 (IOP Publishing, London, 1990).

    Google Scholar 

  27. McKnight, S. W., Stewart, K. P., Drew, H. D. & Moorjani, K. Wavelength-independent anti-interference coating for the far-infrared. Infrared Phys. 27, 327–333 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. K. Enyeart and C. Sean Roy for assistance with experiments, and C. J. Weinberger, D. D. Awschalom, and A. Imamoglu for critical readings of the manuscript. This work was supported by the ARO, the ONR/Medical Free-Electron Laser Program, the NSF, and Sun Microsystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sherwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, B., Williams, J., King, B. et al. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–63 (2001). https://doi.org/10.1038/35065032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065032

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing