Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generic mechanism for generating a liquid–liquid phase transition

Abstract

Recent experimental results1 indicate that phosphorus—a single-component system—can have a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities2 is consistent with experimental data for a variety of materials3,4, including single-component systems such as water5,6,7,8, silica9 and carbon10. Molecular dynamics simulations of very specific models for supercooled water2,11, liquid carbon12 and supercooled silica13 predict a LDL–HDL critical point, but a coherent and general interpretation of the LDL–HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular, liquid metals2,14,15,16,17,18,19,20,21), and such potentials are often used to describe systems that exhibit a density anomaly2. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid–liquid transition in systems like liquid metals, regardless of the presence of a density anomaly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pressure-density isotherms, crystallization line and spinodal line from the molecular dynamics simulations for the isotropic pair potential in three dimensions.
Figure 2: The phase diagrams, with coexistence lines and critical points resulting from MD simulations.

Similar content being viewed by others

References

  1. Katayam, Y. et al. A first-order liquid–liquid phase transition in phosphorus. Nature 403, 170–173 (2000).

    Article  ADS  Google Scholar 

  2. Debenedetti, P. G. Metastable Liquids: Concepts and Principles (Princeton Univ. Press, Princeton, 1998).

    Google Scholar 

  3. Wilding, M. C., McMillan, P. F. & Navrotsky, A. The thermodynamic nature of a phase transition in yttria-alumina liquids. J. Cryst. Noncryst. Solids (in the press).

  4. Brazhkin, V. V., Popova, S. V. & Voloshin, R. N. High-pressure transformations in simple melts. High Pressure Res. 15, 267–305 (1997).

    Article  ADS  Google Scholar 

  5. Brazhkin, V. V., Gromnitskaya, E. L., Stalgorova, O. V. & Lyapin, A. G. Elastic softening of amorphous H2O network prior to the HDA–LDA transition in amorphous state. Rev. High Pressure Sci. Technol. 7, 1129–1131 (1998).

    Article  CAS  Google Scholar 

  6. Mishima, O. Liquid–liquid critical point in heavy water. Phys. Rev. Lett. 85, 334–336 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Bellissent-Funel, M.-C. Evidence of a possible liquid–liquid phase transition in super-cooled water by neutron diffraction. Nuovo Cimento 20D, 2107–2122 (1998).

    CAS  Google Scholar 

  8. Soper, A. K. & Ricci, M. A. Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Lacks, D. J. First-order amorphous-amorphous transformation in silica. Phys. Rev. Lett. 84, 4629–4632 (2000).

    Article  ADS  CAS  Google Scholar 

  10. van Thiel, M. & Ree, F. H. High-pressure liquid–liquid phase change in carbon. Phys. Rev. B 48, 3591–3599 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behavior of metastable water. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Glosli, J. N. & Ree, F. H. Liquid–liquid phase transformation in carbon. Phys. Rev. Lett. 82, 4659–4662 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Saika-Voivod, I., Sciortino, F. & Poole, P. H. Computer simulations of liquid silica: Equation of state and liquid–liquid phase transition. Phys. Rev. E 63, 011202-1–011202-9 (2001).

    ADS  Google Scholar 

  14. Mon, K. K., Ashcroft, M. W. & Chester, G. V. Core polarization and the structure of simple metals. Phys. Rev. B 19, 5103–5118 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Stell, G. & Hemmer, P. C. Phase transition due to softness of the potential core. J. Chem. Phys. 56, 4274–4286 (1972).

    Article  ADS  CAS  Google Scholar 

  16. Silbert, M. & Young, W. H. Liquid metals with structure factor shoulders. Phys. Lett. 58A, 469–470 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Levesque, D. & Weis, J. J. Structure factor of a system with shouldered hard sphere potential. Phys. Lett. 60A, 473–474 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Kincaid, J. M. & Stell, G. Structure factor of a one-dimensional shouldered hard-sphere fluid. Phys. Lett. 65A, 131–134 (1978).

    Article  ADS  Google Scholar 

  19. Cummings, P. T. & Stell, G. Mean spherical approximation for a model liquid metal potential. Mol. Phys. 43, 1267–1291 (1981).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Velasco, E., Mederos, L., Navascués, G., Hemmer, P. C. & Stell, G. Complex phase behavior induced by repulsive interactions. Phys. Rev. Lett. 85, 122–125 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Voronel, A., Paperno, I., Rabinovich, S. & Lapina, E. New critical point at the vicinity of freezing temperature of K2Cs. Phys. Rev. Lett. 50, 247–249 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Behrens, S. H., Christl, D. I., Emmerzael, R., Schurtenberger, P. & Borkovec, M. Charging and aggregation properties of carboxyl latex particles: Experiments versus DLVO theory. Langmuir 16, 2566–2575 (2000).

    Article  CAS  Google Scholar 

  23. Debenedetti, P. G., Raghavan, V. S. & Borick, S. S. Spinodal curve of some supercooled liquids. J. Phys. Chem. 95, 4540–4551 (1991).

    Article  CAS  Google Scholar 

  24. Sadr-Lahijany, M. R., Scala, A., Buldyrev, S. V. & Stanley, H. E. Liquid state anomalies for the Stell-Hemmer core-softened potential. Phys. Rev. Lett. 81, 4895–4898 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Jagla, E. A. Core-softened potentials and the anomalous properties of water. J. Chem. Phys. 111, 8980–8986 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Stillinger, F. H. & Head-Gordon, T. Perturbational view of inherent structures in water. Phys. Rev. E 47, 2484–2490 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Caccamo, C. Integral equation theory description of phase equilibria in classical fluids. Phys. Rep. 274, 1–105 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Rein ten Wolde, P. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  Google Scholar 

  30. Hagen, M. H. J., Meijer, E. J., Mooij, G. C. A. M., Frenkel, D. & Lekkerkerker, H. N. W. Does C60 have a liquid phase? Nature 365, 425–426 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank L. A. N. Amaral, P. V. Giaquinta, E. La Nave, T. Lopez Ciudad, S. Mossa, G. Pellicane, A. Scala, F. W. Starr, J. Teixeira, and, in particular, F. Sciortino for helpful suggestions and discussions. We thank the NSF and the CNR (Italy) for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Franzese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzese, G., Malescio, G., Skibinsky, A. et al. Generic mechanism for generating a liquid–liquid phase transition. Nature 409, 692–695 (2001). https://doi.org/10.1038/35055514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055514

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing