Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Scabrous complexes with Notch to mediate boundary formation

An Erratum to this article was published on 05 April 2001

Abstract

The mechanisms that establish and sharpen pattern across epithelia are poorly understood. In the developing nervous system, the first pattern elements appear as ‘proneural clusters’. In the morphogenetic furrow of the immature Drosophila retina proneural clusters emerge in a wave as a patterned array of 6–10-cell groups, which are recognizable by expression of Atonal, a basic helix–loop–helix transcription factor that is required to establish and pattern the first cell fate1,2,3. The establishment and subsequent patterning of Atonal expression requires activity of the signalling transmembrane receptor Notch2,4. Here we present in vivo and biochemical evidence that the secreted protein Scabrous associates with Notch, and can stabilize Notch protein at the surface. The result is a regulation of Notch activity that sharpens proneural cluster boundaries and ensures establishment of single pioneer neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Altering Scabrous activity.
Figure 2: Scabrous stabilizes Notch and forms a complex in vivo.
Figure 3: Scabrous and Notch collocalize in vivo.
Figure 4: Scabrous and boundaries.

Similar content being viewed by others

References

  1. Dokucu, M. E., Zipursky, S. L. & Cagan, R. L. Atonal, rough and the resolution of proneural clusters in the developing Drosophila retina. Development 122, 4139–4147 (1996).

    CAS  PubMed  Google Scholar 

  2. Baker, N. E., Yu, S. & Han, D. Evolution of proneural atonal expression during distinct regulatory phases in the developing Drosophila eye. Curr. Biol. 6, 1290–1301 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Jarman, A. P., Sun, Y., Jan, L. Y. & Jan, Y. N. Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121, 2019– 2030 (1995).

    CAS  PubMed  Google Scholar 

  4. Bailey, A. M. & Posakony, J. W. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9, 2609 –2622 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Lecourtois, M. & Schweisguth, F. The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev. 9, 2598–2608 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, E. C., Hu, X., Yu, S. Y. & Baker, N. E. The scabrous gene encodes a secreted glycoprotein dimer and regulates proneural development in Drosophila eyes. Mol. Cell. Biol. 16, 1179–1188 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, E. C., Yu, S. Y., Hu, X., Mlodzik, M. & Baker, N. E. Functional analysis of the fibrinogen-related scabrous gene from Drosophila melanogaster identifies potential effector and stimulatory protein domains. Genetics 150, 663–673 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mlodzik, M., Baker, N. E. & Rubin, G. M. Isolation and expression of scabrous, a gene regulating neurogenesis in Drosophila. Genes Dev. 4, 1848–1861 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Jarman, A. P., Grell, E. H., Ackerman, L., Jan, L. Y. & Jan, Y. N. Atonal is the proneural gene for Drosophila photoreceptors. Nature 369, 398–400 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Baker, N. E., Mlodzik, M. & Rubin, G. M. Spacing differentiation in the developing Drosophila eye: a fibrinogen-related lateral inhibitor encoded by scabrous. Science 250, 1370–1377 ( 1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ellis, M. C., Weber, U., Wiersdorff, V. & Mlodzik, M. Confrontation of scabrous expressing and non-expressing cells is essential for normal ommatidial spacing in the Drosophila eye. Development 120, 1959–1969 ( 1994).

    CAS  PubMed  Google Scholar 

  12. Ligoxygakis, P., Yu, S. Y., Delidakis, C. & Baker, N. E. A subset of Notch functions during Drosophila eye development require Su(H) and the E(spl) gene complex. Development 125, 2893– 2900 (1998).

    CAS  PubMed  Google Scholar 

  13. Lee, E. C., Yu, S. Y. & Baker, N. E. The scabrous protein can act as an extracellular antagonist of Notch signaling in the Drosophila wing. Curr. Biol. 10, 931–934 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Cagan, R. L. & Ready, D. F. Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev. 3, 1099–1112 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  15. Baker, N. E. & Zitron, A. E. Drosophila eye development: Notch and Delta amplify a neurogenic pattern conferred on the morphogenetic furrow by Scabrous. Mech. Dev. 49, 173– 189 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila . Cell 61, 523–534 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Rabinow, L. & Birchler, J. A. Interactions of vestigial and scabrous with the Notch locus of Drosophila melanogaster. Genetics 125, 41–50 ( 1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, E. C. & Baker, N. E. gp300sca is not a high affinity Notch ligand. Biochem. Biophys. Res. Commun. 225, 720–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Kidd, S., Baylies, M. K., Gasic, G. P. & Young, M. W. Structure and distribution of the Notch protein in developing Drosophila . Genes Dev. 3, 1113– 1129 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Fehon, R. G. et al. Complex cellular and subcellular regulation of Notch expression during embryonic and imaginal development of Drosophila: Implications for Notch function. J. Cell. Biol. 113, 657–669 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Wesley, C. S. Notch and wingless regulate expression of cuticle patterning genes. Mol. Cell Biol. 19, 5743–5758 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hart, A. C., Krämer, H. & Zipursky, S. L. Extracellular domain of the boss transmembrane ligand acts as an antagonist of the sev receptor. Nature 361 , 732–736 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373– 1385 (2000).

    CAS  PubMed  Google Scholar 

  24. Lieber, T., Kidd, S., Alcamo, E., Corbin, V. & Young, M. W. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev. 7, 1949– 1965 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Rebay, I. et al. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67, 687–699 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  26. Ju, B.-G. et al. Fringe forms a complex with Notch. Nature 405, 191–195 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Jennings, B., Preiss, A., Delidakis, C. & Bray, S. The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120, 3537–3548 (1994).

    CAS  PubMed  Google Scholar 

  28. Wesley, C. S. & Saez, L. Analysis of Notch lacking the carboxyl terminus identified in Drosophila embryos. J. Cell. Biol. 149, 683–696 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blaumueller, C. M. et al. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281– 291 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Artavanis-Tsakonas, N. Baker, K. Fischbach, T. Lieber, M. Mlodzik, M. Muskavitch and M. Young for strains and reagents; L. Saez for help with S2 cell transfections; S. Kidd for cell-surface biotinylation protocol; R. Kopan, E. Newberry, D. Towler, D. Ornitz, M. Tondravi, Y. Kasai, J. Skeath and members of the Cagan laboratory for discussions and comments on the manuscript. This work was supported by the NIH, NSF, a Research Associate Fellowship from the McDonnell Center for Cellular and Molecular Neurobiology (P.A.P.), and an NIH grant to M. Young (C.S.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross L. Cagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, P., Wesley, C., Spencer, S. et al. Scabrous complexes with Notch to mediate boundary formation. Nature 409, 626–630 (2001). https://doi.org/10.1038/35054566

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054566

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing