Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relationship between structural order and the anomalies of liquid water

Abstract

In contrast to crystalline solids—for which a precise framework exists for describing structure1—quantifying structural order in liquids and glasses has proved more difficult because even though such systems possess short-range order, they lack long-range crystalline order. Some progress has been made using model systems of hard spheres2,3, but it remains difficult to describe accurately liquids such as water, where directional attractions (hydrogen bonds) combine with short-range repulsions to determine the relative orientation of neighbouring molecules as well as their instantaneous separation. This difficulty is particularly relevant when discussing the anomalous kinetic and thermodynamic properties of water, which have long been interpreted qualitatively in terms of underlying structural causes. Here we attempt to gain a quantitative understanding of these structure–property relationships through the study of translational2,3 and orientational4 order in a model5 of water. Using molecular dynamics simulations, we identify a structurally anomalous region—bounded by loci of maximum orientational order (at low densities) and minimum translational order (at high densities)—in which order decreases on compression, and where orientational and translational order are strongly coupled. This region encloses the entire range of temperatures and densities for which the anomalous diffusivity6,7,8,9 and thermal expansion coefficient10 of water are observed, and enables us to quantify the degree of structural order needed for these anomalies to occur. We also find that these structural, kinetic and thermodynamic anomalies constitute a cascade: they occur consecutively as the degree of order is increased.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of temperature on the distribution of the orientational order, q, at a density ρ = 1.2 g cm-3.
Figure 2: The path traversed in order-parameter space as liquid water is compressed isothermally at two different temperatures.
Figure 3: Density dependence of the diffusion coefficient, D, shown for eight isotherms.
Figure 4: Relationship between loci of structural, dynamic and thermodynamic anomalies.
Figure 5: The line of structural anomalies in order-parameter space.
Figure 6: Isotaxis lines in the (T, ρ) plane.

Similar content being viewed by others

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College Publishing, Fort Worth, 1976 ).

    MATH  Google Scholar 

  2. Torquato, S., Truskett, T. M. & Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064– 2067 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Truskett, T. M., Torquato, S. & Debenedetti, P. G. Towards a quantification of disorder in materials. Distinguishing equilibrium and glassy sphere packings. Phys. Rev. E 62, 993–1001 ( 2000).

    Article  ADS  CAS  Google Scholar 

  4. Chau, P.-L. & Hardwick, A. J. A new order parameter for tetrahedral configurations. Mol. Phys. 93, 511– 518 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Berendsen, H. J. C., Grigera, R. J. & Stroatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  6. Ruocco, G., Sampoli, M., Torcini, A. & Vallauri, R. Molecular dynamics results for stretched water. J. Chem. Phys. 99 , 8095–8104 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. Diffusion in supercooled water to 300 MPa. Phys. Rev. Lett. 59, 1128–1131 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Angell, C. A., Finch, E. D., Woolf, L. A. & Bach, P. Spin-echo diffusion coefficients of water to 2380 bar and -20 °C. J. Chem. Phys. 65, 3063–3066 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity of supercooled water. Nature 406, 166– 169 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Debenedetti, P. G. Metastable Liquids. Concepts and Principles (Princeton University Press, Princeton, 1996).

    Google Scholar 

  11. Tanaka, H. Simple physical explanation of the unusual thermodynamic behavior of liquid water. Phys. Rev. Lett. 80, 5750– 5753 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Tanaka, H. Two-order-parameter description of liquids: critical phenomena and phase separation in supercooled liquids. J. Phys. Condens. Matter 11 , L159–L168 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Tanaka, H. Simple physical model of liquid water. J. Chem. Phys. 112, 799–809 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Shiratani, E. & Sasai, M. Molecular scale precursor of the liquid-liquid phase transition of water. J. Chem. Phys. 108, 3264–3276 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Paschek, D. & Geiger, A. Simulation study on the diffusion motion in deeply supercooled water. J. Phys. Chem. B 103, 4139–4146 (1999).

    Article  CAS  Google Scholar 

  16. Sciortino, F., Poole, P. H., Stanley, H. E. & Havlin, S. Lifetime of the bond network and gel-like anomalies in supercooled water. Phys. Rev. Lett. 64, 1686– 1689 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sciortino, F., Geiger, A. & Stanley, H. E. Effect of defects on molecular mobility in liquid water. Nature 354, 218– 221 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Soper, A. K. & Ricci, M. A. Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Bellissent-Funel, M.-C. Is there a liquid-liquid phase transition in supercooled water? Europhys. Lett. 42, 161–166 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Angell, C. A. & Kanno, H. Density maxima in high-pressure supercooled water and liquid silicon dioxide. Science 193, 1121–1122 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Poole, P. H., Sciortino, F., Essman, U. & Stanley, H. E. Phase behavior of metastable water. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214–3217 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 ( 1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Goldstein, M. Viscous liquids and the glass transition. A potential energy barrier picture. J. Chem. Phys. 51, 3728– 3739 (1969).

    Article  ADS  CAS  Google Scholar 

  25. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Speedy, R. J. & Angell, C. A. Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45 °C. J. Chem. Phys. 65, 851– 858 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Angell, C. A., Oguni, M. & Sichina, W. J. Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998 –1002 (1982).

    Article  CAS  Google Scholar 

  28. Tombari, E., Ferrari, C. & Salvetti, G. Heat capacity anomaly in a large sample of supercooled water. Chem. Phys. Lett. 300, 749– 751 (1999).

    Article  ADS  CAS  Google Scholar 

  29. DeFries, T. & Jonas, J. Pressure dependence of NMR proton spin-lattice relaxation times and shear viscosity in liquid water in the temperature range -15 to 10 °C. J. Chem. Phys. 66, 896–901 (1977).

    Article  ADS  CAS  Google Scholar 

  30. Mishima, O. & Stanley, H. E. Decompression-induced melting of ice IV and the liquid–liquid transition in water. Nature 392, 164–168 ( 1998).

    Article  ADS  CAS  Google Scholar 

  31. Naberukhin, Y. I., Voloshin, V. P. & Medvedev, N. M. Geometrical analysis of the structure of simple liquids: percolation approach. Mol. Phys. 73, 917 –936 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Nettleton, R. E. & Green, M. S. Expression in terms of molecular distribution functions for the entropy density in an infinite system. J. Chem. Phys. 29, 1365– 1370 (1958).

    Article  ADS  CAS  Google Scholar 

  33. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon Press, Oxford, 1990).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank T.M. Truskett and S. Torquato for discussions. This work was supported by the US Department of Energy and Unilever Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo G. Debenedetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errington, J., Debenedetti, P. Relationship between structural order and the anomalies of liquid water . Nature 409, 318–321 (2001). https://doi.org/10.1038/35053024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing