Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Post-transcriptional gene silencing by double-stranded RNA

Key Points

  • RNA interference (RNAi) is the process by which double-stranded RNA specifically silences the expression of homologous genes through degradation of their cognate mRNA. Silencing is therefore a post-transcriptional phenomenon.

  • The genetic silencing that occurs by RNAi is highly specific and is based on the sequence of the double-stranded RNA.

  • Post-transcriptional gene silencing in plants and fungi is mechanistically related to RNAi in animals.

  • The destruction of mRNA is accomplished by a multi-component nuclease, called the RNA-induced silencing complex, or RISC.

  • The input double-stranded RNA is processed into short (22-nucleotide) RNAs, which are incorporated into the RISC. Here they act as 'guide RNAs' to confer target specificity to the nuclease.

  • A number of likely molecules that participate in RNAi have been identified in many model systems by genetic analysis.

  • The proposed biological roles of RNAi include resistance to viruses, transposon silencing and regulation of endogenous gene expression, particularly during development.

  • RNAi has become a valuable experimental tool for investigating gene function in Caenorhabditis elegans, Drosophila melanogaster and plants.

  • Once the mechanism of RNAi is better understood, it may become a powerful technology to study a broader range of systems, including mammalian organisms and cultured cells.


Imagine being able to knock out your favourite gene with only a day's work. Not just in one model system, but in virtually any organism: plants, flies, mice or cultured cells. This sort of experimental dream might one day become reality as we learn to harness the power of RNA interference, the process by which double-stranded RNA induces the silencing of homologous endogenous genes. How this phenomenon works is slowly becoming clear, and might help us to develop an effortless tool to probe gene function in cells and animals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: How does RNAi work?


  1. 1

    Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).This was the first paper to describe the phenomenon of RNA interference (RNAi) .

    CAS  Article  Google Scholar 

  2. 2

    Tabara, H., Grishok, A. & Mello, C. Soaking in the genome sequence. Science 282, 430–431 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    CAS  Article  Google Scholar 

  4. 4

    Williams, B. R. PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons . Annu. Rev. Biochem. 67, 227– 264 (1998).

    CAS  Google Scholar 

  6. 6

    Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Bosher, J. M., Dufourcq, P., Sookhareea, S. & Labouesse, M. RNA interference can target pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon. Genetics 153 , 1245–1256 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Parrish, S., Fleenor, J., Xu, S., Mello, C. & Fire, A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol. Cell 6, 1077–1087 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Que, Q. & Jorgensen, R. A. Homology-based control of gene expression patterns in transgenic petunia flowers. Dev. Genet. 22, 100–109 ( 1998).

    CAS  Article  Google Scholar 

  10. 10

    Jorgensen, R. A., Cluster, P. D., English, J., Que, Q. & Napoli, C. A. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol. Biol. 31, 957–973 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Luff, B., Pawlowski, L. & Bender, J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3, 505–511 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Furner, I. J., Sheikh, M. A. & Collett, C. E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149, 651–662 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Amedeo, P., Habu, Y., Afsar, K., Scheid, O. M. & Paszkowski, J. Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405, 203–206 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Ingelbrecht, I., Van Houdt, H., Van Montagu, M. & Depicker, A. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl Acad. Sci. USA 91, 10502–10506 (1994).

    CAS  Article  Google Scholar 

  15. 15

    Palauqui, J. C., Elmayan, T., Pollien, J. M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997); erratum 17, 2137 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Angell, S. M. & Baulcombe, D. C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J. 16, 3675–3684 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent . Cell 90, 479–490 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. & Villeneuve, A. M. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev. 14, 1578–1583 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Bahramian, M. B. & Zarbl, H. Transcriptional and posttranscriptional silencing of rodent alpha1(I) collagen by a homologous transcriptionally self-silenced transgene. Mol. Cell. Biol. 19, 274–283 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Cogoni, C. et al. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA–DNA interactions or DNA methylation. EMBO J. 15, 3153–3163 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 ( 1994).

    CAS  Article  Google Scholar 

  22. 22

    Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999). A potential mediator of post-transcriptional gene silencing (PTGS) was identified for the first time. This small 25-nucleotide RNA has become a hallmark of silencing processes that are mediated by double-stranded (ds) RNA molecules.

    CAS  Article  Google Scholar 

  23. 23

    Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293– 296 (2000).The authors identify a dsRNA-inducible nuclease activity that targets mRNAs for degradation. They also show that this enzyme is associated with 22-nucleotide RNA fragments (guide RNAs) that might determine target specificity.

    CAS  Article  Google Scholar 

  24. 24

    Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals . Cell 101, 25–33 (2000).By developing their earlier work on an in vitro RNAi system, these authors show that 22-nucleotide guide RNAs can be produced directly from longer dsRNAs in vitro and that target mRNAs are cleaved in response to dsRNAs at 22-nucleotide intervals.

    CAS  Article  Google Scholar 

  25. 25

    Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191–1200 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. M. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194–5201 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Wu-Scharf, D., Jeong, B., Zhang, C. & Cerutti, H. Transgene and transposon silencing in chlamydomonas reinhardtii by a DEAH-Box RNA helicase . Science 290, 1159–1163 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Catalanotto, C., Azzalin, G., Macino, G. & Cogoni, C. Gene silencing in worms and fungi. Nature 404, 245 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA 97, 11650–11654 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170– 180 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463 –2476 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Zou, C., Zhang, Z., Wu, S. & Osterman, J. C. Molecular cloning and characterization of a rabbit eIF2C protein. Gene 211, 187–194 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Cikaluk, D. E. et al. GERp95, a membrane-associated protein that belongs to a family of proteins involved in stem cell differentiation. Mol. Biol. Cell 10, 3357–3372 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494– 2497 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123– 132 (1999).With reference 26, this is one of the first reports of the genetic analysis of RNAi in C. elegans . This paper establishes a link between RNAi and transposon silencing and links the ARGONAUTE family of proteins to the silencing process.

    CAS  Article  Google Scholar 

  36. 36

    Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999). Establishes a link between RNAi and transposon silencing and identifies a putative nuclease as an effector of silencing.

    CAS  Article  Google Scholar 

  37. 37

    Suzuki, N., Shiratori, M., Goto, M. & Furuichi, Y. Werner syndrome helicase contains a 5′→3′ exonuclease activity that digests DNA and RNA strands in DNA/DNA and RNA/DNA duplexes dependent on unwinding . Nucleic Acids Res. 27, 2361– 2368 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Kamath-Loeb, A. S., Shen, J. C., Loeb, L. A. & Fry, M. Werner syndrome protein. II. Characterization of the integral 3′→5′ DNA exonuclease . J. Biol. Chem. 273, 34145– 34150 (1998).

    CAS  Article  Google Scholar 

  39. 39

    Shen, J. C. et al. Werner syndrome protein. I. DNA helicase and DNA exonuclease reside on the same polypeptide. J. Biol. Chem. 273, 34139–34144 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Huang, S. et al. The premature ageing syndrome protein, WRN, is a 3′→5′ exonuclease. Nature Genet. 20, 114– 116 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Collins, J. J. & Anderson, P. The Tc5 family of transposable elements in Caenorhabditis elegans. Genetics 137, 771–781 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Domeier, M. E. et al. A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science 289, 1928–1931 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Page, M. F., Carr, B., Anders, K. R., Grimson, A. & Anderson, P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast . Mol. Cell. Biol. 19, 5943– 5951 (1999).

    CAS  Article  Google Scholar 

  44. 44

    Cogoni, C. & Macino, G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286, 2342–2344 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Qiao, L. et al. Enhancers of glp-1, a gene required for cell-signaling in Caenorhabditis elegans, define a set of genes required for germline development. Genetics 141, 551– 569 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169–178 (2000); erratum in 10, R393– R394 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543– 553 (2000).

    CAS  Article  Google Scholar 

  49. 49

    Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    CAS  Article  Google Scholar 

  50. 50

    Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191 –3197 (1999).

    CAS  Article  Google Scholar 

  51. 51

    Bass, B. L. Double-stranded RNA as a template for gene silencing. Cell 101, 235–238 (2000).

    CAS  Article  Google Scholar 

  52. 52

    Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the piwi domain. Trends Biochem. Sci. 10, 481–482 (2000).

    Article  Google Scholar 

  53. 53

    Bernstein, E., Caudy, A. C., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature 409, 363–366 (2001).

    CAS  Article  Google Scholar 

  54. 54

    Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication . Trends Biochem. Sci. 25, 156– 165 (2000).

    CAS  Article  Google Scholar 

  55. 55

    Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).

    CAS  Article  Google Scholar 

  56. 56

    Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    CAS  Article  Google Scholar 

  57. 57

    Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    CAS  Article  Google Scholar 

  58. 58

    Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double stranded RNA. Nature Biotechnol. 17, 896–898 (2000).

    Article  Google Scholar 

  59. 59

    Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    CAS  Article  Google Scholar 

  60. 60

    Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013– 2018 (2000).

    CAS  Article  Google Scholar 

  61. 61

    Ngo, H., Tschudi, C., Gull, K. & Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 95, 14687–14692 (1998)

    CAS  Article  Google Scholar 

  62. 62

    Alvarado, A. S. & Newmark, P. A. Double stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl Acad. Sci. USA 96, 5049– 5054 (1999).

    CAS  Article  Google Scholar 

  63. 63

    Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000).

    CAS  PubMed  Google Scholar 

  64. 64

    Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2, 70–75 (2000).

    CAS  Article  Google Scholar 

  65. 65

    Ui-Tei, K., Zenno, S., Miyata, Y. & Saigo, K. Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 479, 79–82 (2000).

    CAS  Article  Google Scholar 

  66. 66

    Jensen, S., Gassama, M. P. & Heidmann, T. Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics 153, 1767–1774 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Malinsky, S., Bucheton, A. & Busseau, I. New insights on homology-dependent silencing of I factor activity by transgenes containing ORF1 in Drosophila melanogaster. Genetics 156, 1147–1155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Brigneti, G. et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746 (1998).

    CAS  Article  Google Scholar 

  69. 69

    Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl Acad. Sci. USA 96, 14147–14152 (1999).This is one of several papers that establishes a second biological function for RNAi by linking dsRNA-induced silencing to virus resistance in plants.

    CAS  Article  Google Scholar 

  70. 70

    Ruiz, F., Vayssie, L., Klotz, C., Sperling, L. & Madeddu, L. Homology-dependent gene silencing in Paramecium. Mol. Biol. Cell 9, 931–943 (1998).

    CAS  Article  Google Scholar 

  71. 71

    Shi, H. et al. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA 6, 1069–1076 (2000).

    CAS  Article  Google Scholar 

  72. 72

    Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000).

    CAS  Article  Google Scholar 

  73. 73

    Li, Y. X., Farrell, M. J., Liu, R., Mohanty, N. & Kirby, M. L. Double-stranded RNA injection produces null phenotypes in zebrafish. Dev. Biol. 217, 394– 405 (2000); erratum 220, 432 (2000).

    CAS  Article  Google Scholar 

  74. 74

    Wargelius, A., Ellingsen, S. & Fjose, A. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem. Biophys. Res. Commun. 263, 156–161 (1999).

    CAS  Article  Google Scholar 

  75. 75

    Oates, A. C., Bruce, A. E. & Ho, R. K. Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev. Biol. 224, 20–28 (2000).

    CAS  Article  Google Scholar 

  76. 76

    Fraser, A. G., James, C., Evan, G. I. & Hengartner, M. O. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Curr. Biol. 9, 292– 301 (1999).

    CAS  Article  Google Scholar 

  77. 77

    Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).

    CAS  Article  Google Scholar 

  78. 78

    Shi, H. et al. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA 6, 1069– 1076 (2000).

    CAS  Article  Google Scholar 

  79. 79

    Chuang, C. F. & Meyerowitz, E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 97, 4985– 4990 (2000).

    CAS  Article  Google Scholar 

  80. 80

    Wang, Z., Morris, J. C., Drew, M. E. & Englund, P. T. Interference of Trypanosoma brucei gene expression by RNA Interference using an integratable vector with opposing T7 promoters. J. Biol. Chem. 275, 40174–40179 (2000).

    CAS  Article  Google Scholar 

Download references


The authors thank R. Ketting (Hubrecht Laboratory, Utrecht) and A. Denli (Cold Spring Harbor Laboratories) for critical reading of the manuscript. A.A.C. is a George A. and Margorie H. Anderson Fellow of the Watson School of Biological Sciences and a Pre-doctoral Fellow of the Howard Hughes Medical Institute. SMH is a Visiting Scientist from Genetica, Inc. (Cambridge, Massachusetts). G.J.H. is a Pew Scholar in the Biomedical Sciences. This work was supported in part by grants from the NIH (G.J.H.).

Author information



Supplementary information

Related links

Related links










Werner syndrome






Bloom syndrome






A ubiquitous vertebrate RNase that is activated indirectly by double-stranded RNA. This enzyme lacks the sequence specificity of RNA interference.


A mutation that behaves non-cell-autonomously is one that affects cells other than those that possess the mutation.


The proportion of genotypically mutant organisms that show the mutant phenotype. If all genotypically mutant individuals show the mutant phenotype, then the genotype is said to be completely penetrant.


Transmission of phenotypes by mechanisms other than changes in DNA sequence.


Direct measurement of transcriptional activity of a gene by incorporation of labelled UTP into its mRNA.


A potent and specific inhibitor of DNA methylation.


A cell that contains two nuclei in a common cytoplasm.


A lollipop-shaped structure that is formed when a single-stranded nucleic acid molecule loops back on itself to form a complementary double helix (stem) topped by a loop.


The process by which the cell destroys mRNAs that are untranslatable owing to the presence of a nonsense codon within the coding region.

RECA (recA)

A multifunctional protein in E. coli that is involved in DNA recombination and postreplicative DNA repair. This protein also has an energy-dependent homology-searching activity.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hammond, S., Caudy, A. & Hannon, G. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2, 110–119 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing