Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Industrial biocatalysis today and tomorrow

Abstract

The use of biocatalysis for industrial synthetic chemistry is on the verge of significant growth. Biocatalytic processes can now be carried out in organic solvents as well as aqueous environments, so that apolar organic compounds as well as water-soluble compounds can be modified selectively and efficiently with enzymes and biocatalytically active cells. As the use of biocatalysis for industrial chemical synthesis becomes easier, several chemical companies have begun to increase significantly the number and sophistication of the biocatalytic processes used in their synthesis operations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4: Reaction mechanism of lipase biocatalysis.
Figure 5: Recently developed biocatalytic systems at BASF.
Figure 6: Biocatalytic processes at DSM.
Figure 7: Biocatalytic processes at Lonza.

References

  1. Faber, K. Biotransformations in Organic Chemistry: A Textbook (Springer, Berlin, 1997).

    Book  Google Scholar 

  2. Dordick, J. S. Biocatalysts for Industry (Plenum Press, New York, 1991).

    Book  Google Scholar 

  3. Jensen, V. J. & Rugh, S. Industrial scale production and application of immobilized glucose isomerase. Methods Enzymol. 136, 356–370 (1987).

    Article  CAS  Google Scholar 

  4. Boesten, W. H.J., Moody, H. M. & Roos, E. C. Process for the recovery of ampicillin from enzymatic acylation of 6-aminopenicillanic acid (Chemferm; patent no. WO.9630376; The Netherlands; 1996).

  5. Schulze, B., Broxterman, R., Shoemaker, H. & Boesten, W. Review of biocatalysis in the production of chiral fine chemicals. Spec. Chem. 18, 244, 246 ( 1998).

    CAS  Google Scholar 

  6. Kaplan, D. L., Dordick, J. S., Gross, R. A. & Swift, G. Enzymes in polymer science: an introduction. Am. Chem. Soc. Symp. Ser. 684, 2–16 ( 1998).

    CAS  Google Scholar 

  7. Pokora, A. R. & Cyrus, W. L. Phenolic developer resins (The Mead Corp., Dayton, OH: US patent no. 4,647,952; 1987 ).

    Google Scholar 

  8. Nagasawa, T. & Yamada, H. Application of nitrile converting enzymes for the production of useful compounds. Pure Appl. Chem. 62, 1441–1444 ( 1990).

    Article  CAS  Google Scholar 

  9. Buchholz, H. & Kasche, V. Biokatalysatoren und Enzymtechnologie (VCH, New York, 1997).

    Google Scholar 

  10. Tramper, J. Chemical versus biochemical conversion: when and how to use biocatalysts. Biotechnol. Bioeng. 52, 290–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Arnold, F. H. & Volkov, A. A. Directed evolution of biocatalysts . Curr. Opin. Chem. Biol. 3, 54– 59 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Stemmer, W. P. C. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Nature 370, 389 –391 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Blinkovsky, A. M., Martin, B. D. & Dordick, J. S. Enzymology in monophasic organic media. Curr. Opin. Biotechnol. 3, 124–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Klibanov, A. M. Asymmetric transformations catalyzed by enzymes in organic solvents. Acc. Chem. Res. 23, 114–120 (1990).

    Article  CAS  Google Scholar 

  15. Russell, A. J., Beckman, E. J. & Chaudhary, A. K. Studying enzyme activity in supercritical fluids . Chemtech 3, 33–37 (1994).

    Google Scholar 

  16. Lalonde, J., Navia, M. A. & Margolin, A. L. Crosslinked enzyme crystals of lipases as catalysts for kinetic resolution of acids and alcohols. Methods Enzymol. 286, 443–464 ( 1997).

    Article  CAS  Google Scholar 

  17. Park, O., Kim, D. Y. & Dordick, J. S. Enzyme-catalyzed synthesis of sugar-containing monomers and linear polymers. Biotechnol. Bioeng. 70, 208–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Khmelnitsky, Y. L., Welch, S. H., Dlark, D. S. & Dordick, J. S. Salts dramatically enhance activity of enzymes suspended in organic solvents . J. Am. Chem. Soc. 116, 2647– 2648 (1994).

    Article  CAS  Google Scholar 

  19. Ru, M. T., Dordick, J. S., Reimer, J. A. & Clark, D. S. Optimizing the salt-induced activation of enzymes in organic solvents: effects of lyophilization time and water content. Biotechnol. Bioeng. 63, 233–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ru, M. T. et al. On the salt-induced activation of lyophilized enzymes in organic solvents: effect of salt kosmotropicity on enzyme activity. J. Am. Chem. Soc. 122, 1565–1571 (2000).

    Article  CAS  Google Scholar 

  21. Engbersen, J. F. J., Broos, J., Verboom, W. & Reinhoudt, D. N. Effects of crown ethers and small amounts of cosolvent on the activity and enantioselectivity of α-chymotrypsin in organic solvents. Pure Appl. Chem. 68, 2171–2178 (1996).

    Article  CAS  Google Scholar 

  22. Slade, C. J. & Vulfson, E. N. Induction of catalytic activity in proteins by lyophilization in the presence of a transition state analogue . Biotechnol. Bioeng. 57, 211– 215 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Russel, A. J. & Klibanov, A. M. Inhibitor-induced enzyme activation in organic solvents. J. Biol. Chem. 263, 11626–11626 (1988).

    Article  Google Scholar 

  24. Khmelnitski, Y. L. et al. Synthesis of water soluble Paclitaxel derivatives by enzymatic acylation. J. Am. Chem. Soc. 119, 11554– 11555 (1997).

    Article  Google Scholar 

  25. Paradkar, V. M. & Dordick, J. S. Aqueous-like activity of α-chymotrypsin dissolved in nearly anhydrous organic solvents . J. Am. Chem. Soc. 116, 5009– 5010 (1994).

    Article  CAS  Google Scholar 

  26. Wang, P., Sergeeva, M. V., Lim, L. & Dordick, J. S. Biocatalytic plastics as active and stable materials for biotransformations. Nature Biotechnol. 15, 789–793 (1997).

    Article  CAS  Google Scholar 

  27. Yang, Z. et al. Activity and stability of enzymes incorporated into acrylic polymers . J. Am. Chem. Soc. 117, 4843– 4850 (1995).

    Article  CAS  Google Scholar 

  28. Chaudhary, A., Lopez, J., Beckman, E. J. & Russell, A. J. Biocatalytic solvent-free polymerization to produce high molecular weight polyesters. Biotechnol. Prog. 13, 318– 325 (1997).

    Article  CAS  Google Scholar 

  29. Wubbolts, M. G., Hoven, J., Melgert, B. & Witholt, B. Efficient production of optically active styrene epoxides in two-liquid phase cultures. Enzyme Microb. Technol. 16, 887–894 (1994).

    Article  CAS  Google Scholar 

  30. Wubbolts, M. G., Favre-Bulle, O. & Witholt, B. Biosynthesis of synthons in two-liquid phase media. Biotechnol. Bioeng. 52, 301–308 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Held, M. et al. Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP1. J. Mol. Catal. Enzymatic 5, 87–93 (1998).

    Article  CAS  Google Scholar 

  32. De Smet, M. J., Wijnberg, H. & Witholt, B. Synthesis of 1,2-epoxyoctane by Pseudomonas oleovorans during growth in a two phase system containing high concentrations of 1-octene. Appl. Environ. Microbiol. 42, 811–816 (1981).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. De Smet, M. J., Witholt, B. & Wijnberg, H. Practical approach to high yield enzymatic stereospecific organic synthesis in multiphase systems. J. Org. Chem. 46, 3128–3131 (1981).

    Article  CAS  Google Scholar 

  34. De Smet, M. J., Kingma, J., Wijnberg, H. & Witholt, B. Pseudomonas oleovorans as a tool in bioconversions of organic substrates: growth, morphology and conversion characteristics in different two-phase systems. Enzyme Microb. Technol. 5, 352–360 (1983).

    Article  CAS  Google Scholar 

  35. Favre-Bulle, O., Schouten, T., Kingma, J. & Witholt, B. Bioconversion of n-octane to octanoic acid by a recombinant Escherichia coli cultured in a two-liquid phase bioreactor. Biotechnology 9, 367–71 (1991).

    CAS  PubMed  Google Scholar 

  36. Laane, C., Boeren, S., Vos, K. & Veeger, C. Rules for optimization of biocatalysts in organic solvents. Biotechnol. Bioeng. 30, 81–87 (1987).

    Article  CAS  PubMed  Google Scholar 

  37. Nikolova, P. & Ward, O. P. Whole cell biocatalysis in nonconventional media. J. Ind. Microbiol. 12, 76– 86 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Buckland, B. C. et al. Microbial conversion of indene to indanol: a key intermediate in the synthesis of Crixivan. Metabol. Eng. 1, 63–74 (1999).

    Article  CAS  Google Scholar 

  39. Schmid, A., Kollmer, A., Mathys, R. G. & Witholt, B. Developments toward large scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles 2, 249–245 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Mathys, R. G., Schmid, A. & Witholt, B. Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation . Biotechnol. Bioeng. 64, 459– 477 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Panke, S., Witholt, B., Schmid, A. & Wubbolts, M. G. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl. Environ. Microbiol. 64, 2032–2043 (1998). [Published erratum appears in Appl. Environ. Microbiol. 64, 3546 (1998).]

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Kiener, A. Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angw. Chem. Int. Ed. Engl. 31, 774– 775 (1992). (Patent no. EP-B 0442430.)

    Article  Google Scholar 

  43. Lamare, S. & Legoy, M.-D. Biocatalysis in the gas phase. Trends Biotechnol. 11, 413–418 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Held, M. et al. An integrated process for the production of toxic catechols from toxic phenols based on a designer biocatalyst. Biotechnol. Bioeng. 62, 641–648 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Z., Feiten, H.-J., Van Beilen, J. B., Duetz, W. & Witholt, B. Preparation of optically active N-benzyl-3-hydroxy-pyrrolidine by enzymatic hydroxylation. Tetrahedr. Asym. 10, 1323–1333 (1999).

    Article  CAS  Google Scholar 

  46. Schmid, A., Sonnleitner, B. & Witholt, B. Medium chain length alkane solvent-cell transfer rates in two-liquid phase, Pseudomonas oleovorans cultures. Biotechnol. Bioeng. 60, 10–23 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  47. Schmid, A., Kollmer, A., Mathys, R. G. & Witholt, B. Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles 2, 249–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Panke, S., Wubbolts, M. G., Schmid, A. & Witholt, B. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol. Bioeng. 69, 91–100 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  49. Panke, S., de Lorenzo, V., Kaiser, A., Witholt, B. & Wubbolts, M. G. Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl. Environ. Microbiol. 65, 5619–5623 (1999).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Yamada, H. in New Frontiers in Screening for Microbial Biocatalysts (eds Kieslich, K., van der Beek, C. P., de Bont, J. A. M. & van den Tweel, W. J. J.) 13–17 (Elsevier, Amsterdam, 1998).

    Book  Google Scholar 

  51. Lye, G. J. & Woodley, J. M. Application of in situ product-removal techniques to biocatalytic processes. Trends Biotechnol. 17, 395–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Witholt, B. et al. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol. 8, 46–52 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Mathys, R. G., Schmid, A., Kut, O. M. & Witholt, B. Alkanol removal from the apolar phase of a two-liquid fermentation system. 2. Effect of fermentation medium on distillation. J. Chem. Technol. Biotechnol. 71, 326–334 (1998).

    Article  CAS  Google Scholar 

  54. Mathys, R. G., Kut, O. M. & Witholt, B. Alkanol removal from the apolar phase of a two-liquid fermentation system. 1. Comparison of a less volatile and more volatile in situ extraction solvent for separation of 1-octanol by distillation . J. Chem. Tech. Biotech. 71, 315– 325 (1998).

    Article  CAS  Google Scholar 

  55. Balkenhohl, F., Ditrich, K., Hauer, B. & Ladner, W. Optically active amines via lipase-catalyzed methoxyacetylation. J. prakt. Chemie 339, 381–384 ( 1997).

    Article  CAS  Google Scholar 

  56. Hauer, B. et al. The development of enzymes for the preparation of chemicals. Chimia 53, 613–616 ( 1999).

    CAS  Google Scholar 

  57. Ress-Löschke, M., Friedrich, T., Hauer, B., Mattes, R. & Engels, D. Verfahren zur Herstellung chiraler Carbonsäuren (BASF; German patent no. DE 198 448 129 A1; 1998)

    Google Scholar 

  58. Boesten, W. H. J. Enzymic Division of DL-phenylglycinamide into its optically active antipodes (German patent no. DE 2526594; 1976).

    Google Scholar 

  59. Boesten, W. H. J. & Meyer-Hoffman, L. R. M. Enzyme product with L-α-aminoacylamidase activity (NOVO, GB 1577087; 1977).

    Google Scholar 

  60. Broxterman, R., Sonke, T., Wories, H. & van den Tweel, W. Biocatalytic production of unnatural amino acids. Pharm. Manuf. Int. 61(2000).

  61. Broxterman, Q. B., Boesten, W. H. J., Schoemaker, H. E. & Schulze, B. DSM gets the biocatalysis bug. Spec. Chem. 17, 186–193 (1997).

    CAS  Google Scholar 

  62. Boesten, W. H. J., Broxterman, Q. B. & Plaum, M. J. M. Process for preparing optically active 2-amino-ω-oxoalkanoic acid derivatives (DSM, EP 905257; 1998).

    Google Scholar 

  63. Kaptein, B. et al. Preparation and use of enantiomerically pure Cα-tetrasubstituted α-amino acids. Chim. Oggi 14, 9– 12 (1996).

    CAS  Google Scholar 

  64. Kaptein, B. et al. Enzymic resolution of α,α-disubstituted α-amino acid esters and amides. Tetrahedr. Asym. 4, 1113–1116 (1993).

    Article  CAS  Google Scholar 

  65. Kruizinga, W. H. et al. Synthesis of optically pure α-alkylated α-amino acids and a single-step method for enantiomeric excess determination. J. Org. Chem. 53, 5392 (1988).

    Article  CAS  Google Scholar 

  66. Roos, E. C. et al. Synthesis of racemic α-amino carboxamides via Lewis acid-mediated reactions of α-methoxyglycinamide derivatives with allylsilanes: enzymic resolution to optically active α-amino acids. J. Org. Chem. 57, 6769–6778 (1992).

    Article  CAS  Google Scholar 

  67. Schoemaker, H. E. et al. Application of enzymes in industrial organic synthesis. Chimia 51, 308–310 ( 1997).

    CAS  Google Scholar 

  68. Kirchner, G., Salzbrenner, E., Werenka, C. & Boesten, W. H. J. Process for the preparation of the disodium salt of Z-L-aspartic acid from fumaric acid (DSM Chemie and Holland Sweetner Company, EP 832982; 1997).

    Google Scholar 

  69. Bruggink, A. Biocatalysis and process integration in the synthesis of semisynthetic antibiotics . Chimia 50, 431–432 (1996).

    Article  CAS  Google Scholar 

  70. Demain, A. L. & Baez-Vasquez, M. A. Immobilized Streptomyces clavuligerus NP1 cells for biotransformation of penicillin G into deacetoxycephalosporin G. Appl. Biochem. Biotechnol. 87, 135– 140 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Boesten, W. H. J., van Dooren, T. J. & Smeets, J. C. M. Process for the preparation of a β-lactam antibiotic (Chemferm, WO 9623897; 1996).

  72. Bruggink, A., Roos, E. C. & de Vroom, E. Penicillin acylase in the industrial production of β-lactam antibiotics. Org. Process Res. Dev. 2, 128 –133 (1998).

    Article  CAS  Google Scholar 

  73. Kulla, H. G. Enzymatic hydroxylations in industrial application. Chimia 45, 81–85 (1991). (Lonza, EP-B 0152948; EP-B 0152949.)

    Article  CAS  Google Scholar 

  74. Wieser, M., Heinzmann, K. & Kiener, A. Bioconversion of 2-cyanopyrazine to 5-hydroxypyrazine-2-carboxylic acid with Agrobacterium sp. DSM 6336. Appl. Microbiol. Biotechnol 48, 174–176 ( 1997). (Lonza, EP-B 0578137.)

    Article  CAS  Google Scholar 

  75. Bergmann, K. E., Cynamon, M. H. & Welch, J. T. Quantitative structure-activity relationships for the in-vitro antimycobacterial activity for pyrazinoic acid esters. J. Med. Chem. 39, 3394–3400 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Spande, T. F. et al. Epibatidine: A novel (chloropyridyl) azabicycloheptane with potent analgesic activity from an Ecuadoran poison frog. J. Am. Chem. Soc. 114, 3475–3478 (1992).

    Article  CAS  Google Scholar 

  77. Roduit, J.-P., Wellig, A. & Kiener, A. Renewable functionalized pyridines derived from microbial metabolites of the alkaloid (S)-nicotine. Heterocycles 46, 1687–1702 (1997). (Lonza, EP-B 0713869.)

    Google Scholar 

  78. Eichhorn, E., Roduit, J.-P., Shaw, N., Heinzmann, K. & Kiener, A. Preparation of (S)-piperazine-2-carboxylic acid, (R)-piperazine-2-carboxylic acid, and (S)-piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells . Tetrahedr. Asym. 8, 2533– 2536 (1997). (Lonza, EP-A 0686698; WO 96/35775.)

    Article  CAS  Google Scholar 

  79. Reipa, V., Mayhew, M. P. & Vilker, V. L. A direct electrode driven P450 cycle for biocatalysis . Proc. Natl Acad. Sci. USA 94, 13554– 13558 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Certik, M. & Shimizu, S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87, 1–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Koizumi, S., Endo, T., Tabata, K. & Ozaki, A. Large scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria . Nature Biotechnol. 16, 847– 850 (1998).

    Article  CAS  Google Scholar 

  82. Kim, Y., Dordick, J. S. & Clark, D. S. Biotechnol. Bioeng. (in the press).

  83. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Michels, P. C., Khmelnitsky, Y. L., Dordick, J. S. & Clard, D. S. Combinatorial biocatalysis: a natural approach to drug discovery. Trends Biotechnol. 16, 210–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Krstenansky, J. L. & Khmelnitsky, Y. L. Biocatalytic combinatorial synthesis. Bioorg. Med. Chem. 7, 2157–2162 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Simon, H., Bader, J., Günther, H., Neumann, S. & Thanos, J. Chiral compounds synthesized by biocatalytic reductions. Angew. Chem. Int. Ed. 24, 539 –553 (1985).

    Article  Google Scholar 

  87. Adlercreutz, P. Cofactor regeneration in biocatalysis in organic media. Biocatal. Biotransform. 14, 1–30 ( 1996).

    Article  Google Scholar 

  88. Chenault, H. K., Simon, E. S. & Whitesides, G. M. Cofactor regeneration for enzyme catalysed synthesis . Biotechnol. Gen. Eng. Rev. 6, 221– 270 (1988).

    Article  CAS  Google Scholar 

  89. Bommarius, A. S., Drauz, K., Groeger, U. & Wandrey, C. in Chirality in Industry (eds Collins, A. N., Sheldrake, G. N. & Crosby, J.) 371–397 (Wiley, Chichester, 1992).

    Google Scholar 

  90. Clair, N. S., Wang, Y.-F. & Margolin, A. L. Cofactor-bound cross linked enzyme crystals (CLEC) of alcohol dehydrogenase. Angew. Chem. Int. Ed. 39, 380–383 (2000).

    Article  Google Scholar 

  91. Westerhausen, D., Herrmann, S., Hummel, W. & Steckhan, E. Formate driven, non-enzymatic NAD(P)H regeneration for the alcohol dehydrogenase catalyzed stereoselective reduction of 4-phenylbutanone. Angew. Chem. Int. Ed. 31, 1529–1531 ( 1992).

    Article  Google Scholar 

  92. Hollmann, F., Schmid, A. & Steckhan, E. First synthetic application of a monooxygenase employing indirect electrochemical NADH-regeneration. Angew. Chem. Int. Ed. (in the press).

  93. Günther, H. & Simon, H. Artificial electron carriers for preparative biocatalytic redox reactions forming reversibly carbon hydrogen bonds with enzymes present in strict or facultative anaerobes. Biocatal. Biotransform. 12, 1–26 (1995).

    Article  Google Scholar 

  94. Resnick, S. & Zehnder, A. J. B. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Appl. Environ. Microbiol. 66, 2045–2051 (2000).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmid, A., Dordick, J., Hauer, B. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001). https://doi.org/10.1038/35051736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051736

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing