Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of shear-induced nematic–isotropic transition in side-chain liquid crystal polymers

Abstract

Flow-induced phase transitions are a fundamental (but poorly understood) property of non-equilibrium systems, and are also of practical importance for tuning the processing conditions for plastics, petroleum products, and other related materials21. Recognition that polymers may exhibit liquid crystal properties has led to the discovery of the first tailored side-chain liquid crystal polymers (SCLCPs), which are formed by inserting a spacer between the main polymer chain and the lateral mesogen liquid–crystalline graftings22. Subsequent research has sought to understand the nature of the coupling between the main polymer chain and the mesogens, with a view to obtaining better control of the properties of these tailored structures22. We show here that the parallel or perpendicular orientation of the mesogens with respect to the main chain can be reversed by the application of an external field produced by a shear flow, demonstrating the existence of an isotropic nematic phase transition in SCLCPs. Such a transition, which was theoretically predicted1,2 for low-molecular-weight liquid crystals but never observed, is shown to be a general property of SCLCPs too. We expect that these SCLCPs will prove to be good candidate systems for the experimental study of these non-equilibrium phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behaviour of the side-chain liquid crystal polymer described in the text.
Figure 2: Evolution of the birefringence versus shear rate at different temperatures.
Figure 3: Stress versus shear rate at 117.5 °C measured in a cone-plate cell (diameter: 12 mm, angle: 0.17 rad) in controlled shear rate mode.
Figure 4: Anisotropy of the main-chain conformation as revealed by neutron scattering.

Similar content being viewed by others

References

  1. Olmsted, P. D. & Goldbart, P. Theory of nonequilibrium phase transition for nematic liquid crystals under shear flow. Phys. Rev. A 41, 4578–4581 ( 1990).

    Article  ADS  CAS  Google Scholar 

  2. Olmsted, P. D. & Goldbart, P. Isotropic-nematic transition in shear flow: state selection, coexistence, phase transitions, and critical behaviour. Phys. Rev. A 46, 4966– 4997 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Wang, X. J. & Warner, M. Theory of nematic comb-like polymers. J. Phys. A 20, 713–731 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Noirez, L., Keller, P. & Cotton, J. P. On the structure and the chain conformation of side-chain liquid crystal polymer. Liq. Cryst. 18, 129–148 (1995).

    Article  CAS  Google Scholar 

  5. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals 2nd edn, 66, 164 (Clarendon, Oxford, 1993).

    Google Scholar 

  6. Noirez, L., Daoud-Aladine, A. & Boeffel, C. Scaling laws in side-chain liquid crystalline polymers. Phys. Rev. Lett. 80, 1453– 1456 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Fourmeaux-Demange, V., Boué, F., Brûlet, A., Keller, P. & Cotton, J. P. Effect of the molecular weight on the whole conformation of a liquid crystalline comb-like polymer in its melt. Macromolecules 31, 801– 806 (1998).

    Article  ADS  Google Scholar 

  8. Reys, V. et al. Short-range-order effects in the isotropic phase of a side-chain polymeric liquid crystal. Phys. Rev. Lett. 61, 2340–2343 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Schmitt, V., Lequeux, F., Pousse, A. & Roux, D. Flow behavior and shear induced transition near an isotropic/nematic transition in equilibrium polymers. Langmuir 10, 955– 961 (1994).

    Article  CAS  Google Scholar 

  10. Berret, J. F., Roux, D. C., Porte, G. & Linder, P. Shear induced isotropic to nematic phase transition in equilibrium polymers. Europhys. Lett. 25, 521–526 ( 1994).

    Article  ADS  CAS  Google Scholar 

  11. Mather, P. T., Romo-Uribe, A., Han, C. D. & Kim, S. S. Rheo-optical evidence of a flow induced isotropic-nematic transition in a thermotropic liquid crystalline polymer. Macromolecules 30, 7977–7989 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Pleiner, H. & Brand, H. R. Local rotational degrees of freedom in nematic liquid-crystalline side-chain polymers. Macromolecules 25, 895–901 ( 1992).

    Article  ADS  CAS  Google Scholar 

  13. Rubin, S. F., Kannan, R. M., Kornfield, J. A. & Boeffel, C. Effect of mesophase order and molecular weight on the dynamics of nematic and smectic side-group liquid-crystal polymers. Macromolecules 28, 3521–3530 ( 1995).

    Article  ADS  CAS  Google Scholar 

  14. Cappellaere, E., Berret, J. F., Decruppe, J. P. & Linder, P. Rheology, birefringence and small-angle neutron scattering in a charged micellar system: evidence of a shear induced phase transition. Phys. Rev. E 56, 1869–1878 ( 1997).

    Article  ADS  Google Scholar 

  15. Gleim, W. & Finkelmann, H. Effect of the spacer length on the mechanical coupling between network and nematic order. Makromol. Chem. 192, 2555–2579 ( 1991).

    Article  Google Scholar 

  16. Gallani, J. L., Hilliou, L. & Martinoty, P. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers. Phys. Rev. Lett. 72, 2109– 2112 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Brand, H. R. & Kawasaki, K. Mode coupling theory of the isotropic-nematic transition in side-chain liquid crystalline polymers. J. Phys. II France 4, 543–548 ( 1994).

    Article  CAS  Google Scholar 

  18. Noirez, L. & Lapp, A. Steady-state shear experiments on a side-chain liquid-crystal polymer: determination of the polymer conformation and liquid-crystal structure. Phys. Rev. E 53, 6115–6120 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Noirez, L. Shear-induced SA-SC transition in side-chain liquid-crystalline polymers. Phys. Rev. Lett. 84, 2164– 2167 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Pieranski, P. & Guyon, E. Instability of certain flows in nematic liquids. Phys. Rev. A 9, 404– 417 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Dealy, J. H. & Wisbrun, K. Melt Rheology and its Role in Plastics Processing (Van Nostrand Reinhold, New York, 1990).

    Google Scholar 

  22. Finkelmann, H., Ringsdorf, H., Siol, W. & Wendorff, J. H. Model consideration and examples of enantiotropic liquid crystalline polymers. Makromol. Chem 179, 273 (1978).

    Article  CAS  Google Scholar 

  23. de Gemmes, P. G. Scaling Concepts in Polymer Physics 165, 224 (Cornell Univ. Press, 1979).

    Google Scholar 

Download references

Acknowledgements

We thank P. Baroni for the construction of the shear devices and his technical help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Noirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujolle-Robic, C., Noirez, L. Observation of shear-induced nematic–isotropic transition in side-chain liquid crystal polymers. Nature 409, 167–171 (2001). https://doi.org/10.1038/35051537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing