Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of five-fold local symmetry in liquid lead

Abstract

The local point symmetry of the short-range order in simple monatomic liquids remains a fundamental open question in condensed-matter science. For more than 40 years it has been conjectured1,2,3,4 that liquids with centrosymmetric interactions may be composed of icosahedral building blocks. But these proposed mobile, randomly orientated structures have remained experimentally inaccessible owing to the unavoidable averaging involved in scattering experiments, which can therefore determine only the isotropic radial distribution function. Here we overcome this limitation by capturing liquid fragments at a solid–liquid interface, and observing the scattering of totally internally reflected (evanescent) X-rays, which are sensitive only to the liquid structure at the interface. Using this method, we observe five-fold local symmetry in liquid lead adjacent to a silicon wall, and obtain an experimental portrait of the icosahedral fragments that are predicted to occur in all close-packed monatomic liquids. By shedding new light on local bond order in disordered structures such as liquids and glasses, these results should lead to a better microscopic understanding of melting, freezing and supercooling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: View of the dominant motif in the structure of bulk liquid lead and of interfacial liquid lead.
Figure 2: Schematic set-up of the diffraction experiment.
Figure 3: Scattering at the interface between liquid lead and Si(001).
Figure 4: Determination of the Si–Pb interface potential from the amplitude of the azimuthal relative intensity modulation ΔImod/ I.

Similar content being viewed by others

References

  1. Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43–46 (1952).

    Article  ADS  CAS  Google Scholar 

  2. Bernal, J. D. Geometry of the structure of monatomic liquids. Nature 185, 68–70 (1960).

    Article  ADS  Google Scholar 

  3. Scott, G. D. Radial distribution of the random close packing of equal spheres. Nature 194, 956–957 ( 1962).

    Article  ADS  CAS  Google Scholar 

  4. Bernal, J. D. The structure of liquids. Proc. R. Soc. Lond. A 280 , 299–322 (1964).

    Article  ADS  CAS  Google Scholar 

  5. Turnbull, D. Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. 20, 411–424 (1952).

    Article  ADS  CAS  Google Scholar 

  6. Finney, J. L. Random packings and the structure of simple liquids. Proc. R. Soc. Lond. A 319, 497–493; 495–507 (1970).

    ADS  Google Scholar 

  7. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Nelson, D. R. & Spaepen, F. Polytetrahedral order in condensed matter. Solid State Phys. 42, 1– 90 (1989).

    Article  CAS  Google Scholar 

  9. Ocko, B. (ed.) Focus on Liquid Interfaces (Vol. 12, Synchrotron Radiation News, Gordon &&&&& Breach, Newark, 1999).

    Google Scholar 

  10. Tooney, M. F. et al. Voltage-dependent ordering of water molecules at an electrode-electrolyte interface. Nature 368, 444– 446 (1994).

    Article  ADS  Google Scholar 

  11. Huisman, W. J. et al. Layering of a liquid metal in contact with a hard wall. Nature 390, 379–381 ( 1997).

    Article  ADS  CAS  Google Scholar 

  12. Yu, C.-J., Richter, A. G., Datta, A., Durbin, M. K. & Dutta, P. Observation of molecular layering in thin liquid films using x-ray reflectivity. Phys. Rev. Lett. 82, 2326–2329 ( 1999).

    Article  ADS  CAS  Google Scholar 

  13. Magnussen, O. M. et al. X-ray reflectivity measurements of surface layering in liquid mercury. Phys. Rev. Lett. 74, 4444– 4447 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Regan, M. J. et al. Surface layering in liquid gallium: an x-ray reflectivity study. Phys. Rev. Lett. 75, 2498– 2501 (1005).

    Article  Google Scholar 

  15. Moss, S. C. et al. X-ray determination of the substrate modulation potential for a two-dimensional Rb liquid in graphite. Phys. Rev. Lett. 57, 3191–3194 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Broughton, J. Q., Bonissent, A. & Abraham, F. F. The fcc (111) and (100) crystal-melt interface: a comparison by molecular dynamics simulation. J. Chem. Phys. 74, 4029–4037 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Rhykerd, C. L., Schoen, M., Diestler, D. J. & Cushman, J. H. Epitaxy in simple classical fluids in micropores and near-solid surfaces. Nature 330, 461–463 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Curtin, W. A. Density-functional theory of the solid-liquid interface. Phys. Rev. Lett. 59, 1228–1231 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Bouchard, B. et al. A triple-crystal diffractometer for high-energy synchrotron radiation at the HASYLAB high-field wiggler beamline BW5. J. Synch. Radiat. 5, 90–101 ( 1998).

    Article  CAS  Google Scholar 

  20. Tschentscher, Th. & Suortti, P. Experiments with very high energy synchrotron radiation. J. Synch. Radiat. 5, 286–292 (1998).

    Article  CAS  Google Scholar 

  21. North, D. M., Enderby, J. E. & Egelstaff, P. A. The structure factor for liquid metals. Proc. Phys. Soc. Ser. 2 1, 784– 794; 1075–1087 (1968).

    Google Scholar 

  22. Barton, S. W. et al. Distribution of atoms at the surface of liquid mercury. Nature 321, 685–687 ( 1986).

    Article  ADS  CAS  Google Scholar 

  23. Grey, F., Feidenhans’l, R., Pedersen, J. S., Nielsen, M. & Johnson, R. L. Pb/Ge(111) 1x1: An anisotropic two-dimensional liquid. Phys. Rev. B 41, 9519–9522 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Dosch, H. Critical Phenomena at Surfaces and Interfaces (Vol. 126, Tracts in Modern Physics, Springer, Berlin, 1992).

    Book  Google Scholar 

Download references

Acknowledgements

We dedicate this Letter to the memory of O. Klein, who died on 23 May 2000. We thank H.R. Trebin and S.C. Moss for discussions, and H. Trenkler for assistance at the ESRF. This work was funded by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Reichert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichert, H., Klein, O., Dosch, H. et al. Observation of five-fold local symmetry in liquid lead. Nature 408, 839–841 (2000). https://doi.org/10.1038/35048537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing